Responsive image
博碩士論文 etd-0619103-193218 詳細資訊
Title page for etd-0619103-193218
論文名稱
Title
複金屬燈電子安定器之自動頻率追蹤控制
Auto-Tracking Control for High-Frequency Electronic Ballast of Metal Halide Lamps
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-05-23
繳交日期
Date of Submission
2003-06-19
關鍵字
Keywords
音頻共振、自動頻率追蹤、電子安定器、複金屬燈
metal halide lamp, acoustic resonance, electronic ballast, auto-tracking control
統計
Statistics
本論文已被瀏覽 5702 次,被下載 43
The thesis/dissertation has been browsed 5702 times, has been downloaded 43 times.
中文摘要
本文提出一具有自動頻率追蹤控制功能之高頻電子式安定器,使複金屬燈能操作於無音頻共振之頻率窗口,不論複金屬燈在任何情況下操作,一旦發生音頻共振,「自動頻率追蹤」法可即時改變安定器操作頻率,直到追蹤到一穩定工作頻率為止。
本文首先探討音頻共振發生現象,並分析複金屬燈發生音頻共振時的電特性,據以設計音頻共振偵測電路,研擬控制策略。本文以70W複金屬燈為對象,設計一高頻電子安定器,採半橋式D類共振式換流器之電路架構,以單晶片微處理器配合音頻共振偵測電路完成「自動頻率追蹤」法,在20kHz至30kHz之間,搜尋可穩定操作之頻率窗口。此外,前級以降昇壓轉換器作為定功率控制,使複金屬燈功率不因頻率變化而改變,維持在額定功率穩定工作;此降昇壓轉換器同時可兼作輸入之功因修正電路。
Abstract
A high-frequency electronic ballast with auto-tracking control was proposed to operate the metal halide lamps at a specific frequency free from acoustic resonance. In case the acoustic resonance should happen, the operating frequency is changed step by step with the auto-tracking control, until the lamp is operated at a frequency with stable operation.
The electrical characteristics of the lamps are first investigated. Based on the investigated results, a detection circuit is designed to identify the occurrence of acoustic resonance. With the auto-tracking control, the Class-D half-bridge series-resonant inverter can be adopted for the high-frequency electronic ballast to achieve high efficiency and high power density. The control strategy of auto-tracking is practically realized by a single-chip microprocessor. The proposed approach is implemented on a 70 W test lamp with an operating frequency range from 20 kHz to 30 kHz. To regulate the lamp power at its rated value, a buck-boost converter is used as a pre-regulator, which serves also as a power-factor-corrector to achieve a high power factor at the input line.
目次 Table of Contents
中文摘要 I
英文摘要 II
目錄 III
圖表目錄 V
第一章 簡介 1
1-1 研究動機 1
1-2 本文大綱 3
第二章 複金屬燈之特性 4
2-1 高低頻特性 4
2-2 啟動特性 6
2-3 暫態特性 7
第三章 音頻共振現象分析與解決方法 10
3-1音頻共振現象 10
3-1-1已知音頻共振問題的解決方法 11
3-1-2音頻共振現象之分析 13
3-2音頻共振現象與雙邊帶載波發送振幅調變 15
3-2-1 雙邊帶載波發送振幅調變 15
3-2-1 波包檢波電路 17
3-3音頻共振偵測電路 19
第四章 複金屬燈安定器電路架構分析 24
4-1定功率之功因修正電路 24
4-2半橋式共振負載換流電路 28
4-3 點火電路 34
4-3-1 諧振電壓點火 34
4-3-2 單級高電壓點火電路 34
4-3 控制電路 36
4-3-1 控制流程 36
4-3-2 控制電路圖 38
第五章 實例與量測 41
5-1 電路實例 41
5-2 實驗結果 42
5-2-1 降升壓轉換器 42
5-2-2 降升壓轉換器之直流輸出電壓 43
5-2-3 半橋式共振換流器 44
5-3 點火電路 46
5-4 控制電路實驗結果 41
5-4-1 無音頻共振信號窗口的啟動 47
5-4-2 有音頻共振信號窗口的啟動 48
5-4-3 從上限頻率跳躍至下限頻率 49
第六章 結論與討論 54
參考文獻 54

圖 表 目 錄
圖2-1 複金屬燈低頻工作特性 5
圖2-2 複金屬燈高頻工作特性 5
圖2-3 複金屬燈光譜分布圖 6
圖2-4 頻率對複金屬發光效率的影響 6
圖2-5 複金屬燈的啟動暫態波形 7
圖2-6 複金屬燈A的啟動暫態波形 8
圖2-7 複金屬燈B的啟動暫態波形 9
圖3-1 音頻共振發生之燈管電壓與電流波形 14
圖3-2 DSB-TC AM信號的系統方塊圖 16
圖3-3 基頻信號與合成信號示意圖 17
圖3-4 (a)波包檢波電路,(b)輸入信號Vin(t),(c)輸出信號Vout(t) 18
圖3-5 音頻共振時所量測之燈管電壓波形 19
圖3-6 音頻共振偵測電路 20
圖3-7 音頻共振與偵測電路各點量測之波形 21
圖3-8 音頻共振信號與頻率關係圖 22
圖3-9 音頻共振信號與頻率關係圖 23
圖4-1 雙級高功因電子安定器方塊圖 24
圖4-2 降升壓式功因修正電路 25
圖4-3 電感電流iL波形 26
圖4-4 串聯諧振並聯負載式換流器 29
圖4-5 並聯負載諧振式換流器等效電路圖 29
圖4-6 負載電流與操作頻率之關係 32
圖4-7 輸出電壓增益大小對操作頻率之響應特性曲線 33
圖4-8 單級高電壓點火電路 35
圖4-9 具有單級高電壓點火電路之串聯諧振並聯負載式換流器 36
圖4-10 控制流程圖 37
圖4-11 控制電路 39
圖5-1 電路架構圖 40
圖5-2 輸入電壓及輸入電流波形 42
圖5-3 整流後輸入電壓Vrec及ILb電流波形 42
圖5-4 DCM模式下工作之導通率D及電感電流Ib波形 43
圖5-5 20 kHz燈管啟動電壓及降升壓轉換器輸出電壓Vdc波形 44
圖5-6 30 kHz啟動電壓及降升壓轉換器直流輸出電壓Vdc波形 44
圖5-7 穩態工作之燈管電壓及電流波形 45
圖5-8 切換開關Q1導通率及電流波形 45
圖5-9 諧振點火燈管電壓的波形 46
圖5-10 單級點火電路燈管電壓的波形 46
圖5-11 Philips 70 W之燈管1之音頻共振信號與頻率關係圖 47
圖5-12 20kHz穩態工作之燈管電壓及電流波形 48
圖5-13 23kHz穩態工作之燈管電壓及電流波形 48
圖5-14 21kHz啟動之燈管電壓、電流與音頻共振信號波形 49
圖5-15 21k Hz之音頻共振信號波與操作頻率關係 49
圖5-16 24.2k Hz啟動之燈管電壓、電流與音頻共振信號波形 50
圖5-17 24.2k Hz之音頻共振信號波與操作頻率關係 50
圖5-18 Philips 70W之燈管2之音頻共振信號與頻率關係圖 51
圖5-19 30 kHz啟動之燈管電壓、電流與音頻共振信號波形 52
圖5-20 30 kHz之音頻共振信號波與操作頻率關係 52
表5-1 電路規範 41
表5-2 電路參數 41
表5-3 電路實際量測結果 43
參考文獻 References
[1] Lighting Handbook, 8th edition, Illuminating Engineering Society of North America, 1995.
[2] POWERSTAR HOI-T and HQI-TS Compact Metal-Halide Lamps, OSRAM Company Technical Information, 1997.
[3] M. Sugiura, “Review of Metal-Halide Discharge-Lamp Development 1980-1992,” IEE Proceedings-A, Vol. 140, No. 6, Nov. 1993, pp. 443-449.
[4] S. A. Mucklejohn and B. Preston, “Low Wattage Metal Halide Lamps with Ceramic Arc Tubes 1980 to 2000,” IEE Seminar on Electrical Discharges for Lighting, 1999, pp. 2/1-2/4.
[5] 復旦大學電光源實驗室,電光源原理,上海人民出版社,1977。
[6] 飛利浦照明,商業空間照明, 1997。
[7] R. G. Gibson, “Dimming of Metal Halide Lamps,” Journal of the Illuminating Engineering Society, Summer 1994, pp. 19-25.
[8] N. Fukumori, H. Nishimura, K. Uchihashi, and M. Fukuhara, “A Study of HID Lamp Life when Operated by Electronic Ballasts,” Journal of the Illuminating Engineering Society, Winter 1995, pp. 41-47.
[9] W. Pabst and D. Klien, “Igniting High-Pressure Lamps with Electronic Ballasts,” Journal of the Illuminating Engineering Society, Summer 1992, pp. 14-20.
[10] I. K. Lee, S. J. Choi, K. C. Lee, and B. H. Cho, “Modeling and Control of Automotive HID Lamp Ballast,” IEEE International Conference on Power Electronics and Drive Systems, July 1999, pp. 506-510.
[11] XBO Xenon Short Arc Lamps, OSRAM Berlin-Munich Germany, 1978.
[12] A. Lenef, “Modeling and Measurements of Tungsten Sputtering in High Intensity Discharge Lamps During Starting,” IEEE ICOPS'99, Conference Record - Abstracts, 2000, pp. 241.
[13] B. R. Lin and Y. C. Hsieh, “Dimming Control of Metal Halide Lamp with High Power Factor,” IEEE ISIE'99, Vol. 2, 1999, pp. 590-595.
[14] B. Cook, “New Developments and Future Trends in High-Efficiency Lighting,” Engineering Science and Education Journal, Vol. 9, No 5, Oct. 2000, pp. 207-217.
[15] H. Nishimura, H. Nagase, K. Uchihashi, T. Shiomi, and M. Fukuhara, “A New Electronic Ballasts for HID Lamps,” Journal of the Illuminating Engineering Society, Summer 1988, pp. 70-76.
[16] H. J. Faehnrich and E. Rasch, “Electronic Ballasts for Metal Halide Lamps,” Journal of the Illuminating Engineering Society, Summer 1988, pp. 131-140.
[17] E. Rasch and E. Statnic, “Behavior of Metal Halide Lamps with Conventional and Electronic Ballast,” Journal of the Illuminating Engineering Society, Summer 1991, pp. 88-96.
[18] E. J. P. Mascarenhas, “Applications of Electronic Circuits in Lighting,” IEE Proceedings-A, Vol. 140, No. 6, Nov. 1993, pp. 435-442.
[19] S. Wada, A. Okada, and S. Morii, “Study of HID Lamps with Reduced Acoustic Resonances,” Journal of the Illuminating Engineering Society, Winter 1987, pp.162-175.
[20] H. Peng, S. Ratanapanachote, P. Enjeti, L. Laskai, and I. Pitel, “Evaluation of Acoustic Resonance in Metal Halide Lamps and An Approach to Detect Its Occurrence,” IEEE IAS '97 Annual meeting, pp. 2276-2283.
[21] J. Olsen and W. P. Moskowitz, “Time Resolved Measurements of HID Lamp Acoustic Frequency Spectra,” IEEE IAS'98 Annual meeting, pp. 2111-2116.
[22] L. Laskai, P. N. Enjeti, and I. J. Potel, “White-Noise Modulation of High-Frequency High-Intensity Discharge Lamp Ballasts,” IEEE Trans. on Industry Applications, Vol. 34, No. 3, May/June 1998, pp. 597-605.
[23] J. Zhou, L. Ma, and Z. Qian, “A Novel Method for Testing Acoustic Resonance of HID Lamps,” IEEE APEC'99, Vol. 1, 1999, pp. 480-485.
[24] A. R. Prasad, P. D. Ziogas, and S. Manlas, “A Novel Passive Waveshaping Method for Single-Phase Diode Rectifiers,” IEEE Transactions on Industrial Electronics, Vol. 37, No. 6, , Dec. 1990 pp. 521-530.
[25] J. Olsen and W. P. Moskowitz, “Time Resolved Measurements of HID Lamp Acoustic Frequency Spectra,” IEEE Industry Applications Society Annual Meeting, 1998, pp. 2111-2116.
[26] S. Wada, A. Okada, and S. Morri, “Study of HID Lamps with Reduced Acoustic Resonances,” Journal of the Illuminating Engineering Society, Winter 1987, pp. 162-175.
[27] T.F. Lin and C.S. Moo, “A High-Power-Factor Electronic Ballast for Metal Halide Lamps With Hot Restarting,” IEEE Annual Conference of the IEEE Industrial Electronics Society, IECON2000, Nagoya Japan, Oct. 2000, pp. 2261-2266.
[28] C. S. Moo and K. H. Chen, “Operating characteristics of Small-Wattage Metal Halide Lamps with Square Wave Current from 50 Hz to 50 kHz,” To be presented at IEEE Industry Application Society 2003 IAS 38th Annual Meeting, Salt Lake City USA.
[29] Requirements for Ignitors for Xenon Lamps, OSRAM Munich Germany, 1978.
[30] C. S. Moo, T F. Lin, and Y. C. Chung, “Design an Ignitor for Short-Arc Xenon Lamps,” IEEE Industry Applications Society Annual Meeting ,1999, pp 612-617.
[31] S. Miaosen, O. Zhaoming, and Z. P. Fang, “Design of A Two-Stage Low-Frequency Square-Wave Electronic Ballast for HID Lamps,” IEEE Trans. on Industry Applications, Vol. 39, No. 2 . Mar/Apr 2003, pp 424 – 430.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.119.148
論文開放下載的時間是 校外不公開

Your IP address is 18.222.119.148
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code