Responsive image
博碩士論文 etd-0619106-162421 詳細資訊
Title page for etd-0619106-162421
論文名稱
Title
使用時域有限差分法分析大尺寸左手蘑菇型結構
The Analysis of Electrically Large Left-Handed Metamaterial Based on Mushroom Structure Using FDTD Approach
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-03
繳交日期
Date of Submission
2006-06-19
關鍵字
Keywords
蘑菇型結構、時域有限差分法、左手超穎物質
Mushroom Structure, Finite-Difference Time-Domain Method, Left-Handed Metamaterial
統計
Statistics
本論文已被瀏覽 5692 次,被下載 2347
The thesis/dissertation has been browsed 5692 times, has been downloaded 2347 times.
中文摘要
在本博士論文中,全波時域有限差分法(Finite-Difference Time-Domain Method)結合細線以及細狹縫近似方法被提出來並使用於分析由週期性蘑菇型結構所組成的超穎物質(Metamaterial),該方法適用於分析大尺寸且局部具有細微變化的結構。此外,蘑菇型結構的週期性分析可以藉由計算單一蘑菇型結構並利用週期性的邊界條件產生近似於無限週期性的電磁場分佈,然後得到該結構的色散曲線。混合型的右/左手(Composite Right-/Left-Handed)傳輸線方法藉由使用等效的集總電路模型可以被用於近似CRLH Metamaterial。一個平面型左手微波透鏡與一個由410個蘑菇型結構所組成的拋物線型左手微波透鏡在本論文被提出,並以實驗及全波模擬的方法證明該透鏡具有負的折射係數。
Abstract
A full wave finite-difference time-domain method (FDTD) combined with thin-wire and thin-slot algorithms to analyze a metamaterial fabricated with periodic mushroom structures, is proposed in this dissertation. This proposed method is suitable for analyzing problems involving large structures with fine structural details. A periodic analysis for mushroom structures is presented. Only a single unit mushroom cell is required to present the phenomena of infinite periodicity with the help of periodic boundary conditions (PBCs).
The composite right-/left-handed (CRLH) transmission line (TL) approach is introduced and used to approximate CRLH metamaterial through lumped L and C. Finally, several CRLH metamaterial mushroom-based structures are investigated. A 19 by 8 flat microwave lens and a parabolic microwave lens structure composed of 410 unit mushroom cells are investigated. These structures demonstrate negative refractive index (NRI) characteristics while operate in the left-hand (LH) region. The simulation and measurement results of one- and two-dimensional CRLH mushroom-based structures are compared.
目次 Table of Contents
1 Introduction 1
1.1 Left-Handed Material 1
1.2 Finite-Difference Time-Domain Analysis of Mushroom Structures 2
1.3 Overview 3
2 Finite-Difference Time-Domain Method 4
2.1 FDTD Method 4
2.2 Stability Condition 10
2.3 Algorithms for Handling Fine Geometrical Features in FDTD Method 12
2.3.1 Thin Wire Algorithm 13
2.3.2 Thin Slot Algorithm 15
2.3.3 Coaxial Line Algorithm 16
2.4 Periodic Boundary Conditions 19
2.5 Convolution Perfectly Matched Layer 26
3 Composite Right-/Left-Handed Metamaterials 28
3.1 Left-Handed Materials 28
3.2 Composite Right-/Left-Handed Transmission Line 29
3.3 Practical Implementation of CRLH TL 35
3.3.1 One-dimensional CRLH TL 36
3.3.2 Two-dimensional CRLH TL 41
4 The Analysis of Left-Handed Mushroom Structures by FDTD Method 43
4.1 1-D Linear Four-cell Mushroom Structure 43
4.2 Dispersion Diagram of Mushroom Structure 48
4.2.1 Dispersion Diagram Calculation using Periodic Boundary Condition 48
4.2.2 Dispersion Diagram Calculation using S-parameters 51
4.3 17 by 17-cell Square Mushroom Structure 52
4.4 Left-Handed Microwave Lens 59
4.4.1 Interface between RH and LH Media 59
4.4.2 Flat Lens 61
4.4.3 Parabolic Lens 63
5 Conclusions 68
Bibliography 69
Appendix A: FDTD Updating Equations 74
Appendix B: CPML Updating Equations 77
Vita 82
參考文獻 References
[1] A. Lai, T. Itoh, and C. Caloz, "Composite right/left-handed transmission line metamaterials," in IEEE Microwave Mag., vol. 5, 2004, pp. 34-50.
[2] V. Veselago, "The electrodynamics of substances with simultaneously negative values of e and m," Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509-514, Jan-Feb. 1968.
[3] C. Allen, C. Caloz, and T. Itoh, "Leaky-waves in a metamaterial-based two-dimensional structure for a conical beam antenna application," in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp. 305-308.
[4] C. Caloz and T. Itoh, "Positive/negative refractive index anisotropic 2-D metamaterials," IEEE Microwave and Wireless Compon. Lett., vol. 13, no.12, pp. 547-549, Dec. 2003.
[5] C. Caloz and T. Itoh, "A novel mixed conventional microstrip and composite right/reft-handed backward-wave directional coupler with broadband and tight coupling characteristics," IEEE Microwave and Wireless Compon. Lett., vol. 14, no. 1, pp. 31-33, Jan 2004.
[6] C. Caloz, A. Lai, and T. Itoh, "Wave interactions in a left-handed mushroom structure," in IEEE AP-S/URSI Int. Symp. Dig., 2004, pp. 1403-1406.
[7] C. Caloz, I. Lin, and T. Itoh, "Characteristics and potential applications of nonlinear left-handed transmission lines," Microwave and Optical Tech. Lett., vol. 40, no.6, March 20, 2004.
[8] C. Caloz, A. Sanada, and T. Itoh, "A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microwave Theory Tech., vol. 52, no. 3, pp. 980-992, March 2004.
[9] D. Correia and J. M. Jin, "Theoretical analysis of left-handed metamaterials using FDTD-PML method," in Microwave Optoelectronics Conf., 2003, pp. 1033-1036.
[10] G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech., vol. 50, no. 12, pp. 2702-2712, Dec. 2002.
[11] F. Elek and G. V. Eleftheriades, "Dispersion analysis of the shielded sievenpiper structure using multiconductor transmission-line theory," IEEE Microwave Wirless Comp. Lett., vol. 14, no. 5, pp. 219-221, May 2004.
[12] A. Grbic and G. V. Eleftheriades, "Subwavelength focusing using a negative-refractive-index transmission line lens," IEEE Antennas Wireless Propagat Lett., vol. 2, pp. 186-189, 2003.
[13] A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, "Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial," Optics Express, vol. 11, no. 7, April 7, 2003.
[14] T. Kokkinos, R. Islam, C. D. Sarris, and G. V. Eleftheriades, "Rigorous analysis of negative refractive index metamaterials using FDTD with embedded lumped elements," in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp. 1783-1786.
[15] A. Lai, W. Y. Wu, K. M. K. H. Leong, T. Itoh, and C. Caloz, "Quasi-optical manipulations of microwaves using metamaterial interfaces," in IEEE AP-S/URSI Int. Symp. Dig., 2005, pp. 273-276.
[16] I. Lin, M. DeVincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. Microwave Theory Tech., vol. 52, no. 4, pp. 1142-1149, April 2004.
[17] H. Okabe, C. Caloz, and T. Itoh, "A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section," IEEE Trans. Microwave Theory Tech., vol. 52, no. 3, pp. 798-804, March 2004.
[18] A. Sanada, C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microwave Theory Tech., vol. 52, no. 4, pp. 1252-1263, April 2004.
[19] A. Sanada, M. Kimura, I. Awai, H. Kybo, C. Caloz, and T. Itoh, "A planar zeroth-order resonator antenna using left-handed transmission line," in Proc. European Microwave Conf., 2004, pp. 1341-1344.
[20] D. Sievenpiper, L.Zhang, F. J. Broas, N. G. Alexopulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, pp. 2059-2074, Nov. 1999.
[21] W. Y. Wu, A. Lai, K. M. K. H. Leong, C. W. Kuo, and T. Itoh, "Efficient FDTD method for analysis of left-handed mushroom structure," in IEEE AP-S/URSI Int. Symp. Dig., 2005, pp. 798-801
[22] R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review E, vol. 64, #056625, 2001.
[23] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media," IEEE Trans. Antennas Propagat., vol. 14, No.3, pp. 300-307, May 1966.
[24] R. M. Mäkinen, J. S. Juntunen, and M. A. Kivikoski, "An improved thin-wire model for FDTD," IEEE Trans. Microwave Theory Tech., vol. 50, no. 5, pp. 1245-1255, May 2002.
[25] R. M. Mäkinen and M. A. Kivikoski, "A stabilized resistive voltage source for FDTD thin-wire models," IEEE Trans. Antennas Propagat., vol. 51, no. 7, pp. 1615-1622, July 2003.
[26] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed: Artech House 2000.
[27] J. Gilbert and R. Holland, "Implementation of the thin-slot formalism in the finite-difference BMP code THREDII," IEEE Trans. Nucl. Sci., vol. NS-28, pp. 4269-4274, Dec. 1981.
[28] M. A. Gkatzianas, C. A. Balanis, and R. E. Diaz, "The Gilnert-Holland FDTD thin slot model revisited: an alternative expression for the in-cell capacitance," IEEE Microwave Wirless Comp. Lett., vol. 14, no. 5, pp. 219-221, May 2004.
[29] K. P. Ma, M. Li, J. L. Drewniak, T. H. Hubing, and T. P. V. Doren, "Comparison of FDTD algorithms for subcellular modelling of slots in shielding enclosures," IEEE Trans. Electromag. Compat., vol. 39, no. 2, pp. 147-155, May 1997.
[30] J. Riley and C. D. Turner, "Hybird thin-slot algorithm for the analysis of narrow apertures in finite-difference time-domain calculations," IEEE Trans. Antennas Propagat., vol. 38, pp. 1943-1950, Dec. 1990.
[31] P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propagat., vol. 42, no. 9, pp. 1317-1324, Sept. 1994.
[32] D. Paul, N. M. Pothecary, and C. J. Railton, "Calculation of the dispersive characteristics of open dielectric structures by the finite-difference time-domain method," IEEE Trans. Microwave Theory Tech., vol. 42, no. 7, pp. 1207-1212, July, 1994.
[33] G. Turner and C. Christodoulou, "Broadband periodic boundary condition for FDTD analysis of phased array antennas," in IEEE AP-S/URSI Int. Symp. Dig., 1998, pp. 1020-1023.
[34] A. C. Cangellaris and R. Lee, "On the accuracy of numerical wave simulations on finite methods," J. Electromagn. Waves Applicat., vol. 6, no. 12, pp. 1635-1653, 1992.
[35] J. B. Schneider, "Faster-than-light propagation," IEEE Microwave and Guided Wave Lett., vol. 9, No. 2, pp. 54-56, Feb. 1999.
[36] J. B. Schneider and R. J. Kruhlak, "Inhomogeneous waves and faster-than-light propagation in the Yee FDTD grid," in IEEE AP-S/URSI Int. Symp. Dig., 1999, pp. 184-187.
[37] K. L. Shlager, J. G.Maloney, S. L. Pay, and A. F. Peterson, "Relative accuracy of several finite-difference time-domain methods in two and three dimensions," IEEE Trans. Antennas Propagat., vol. 41, pp. 1732-1737, Dec. 1993.
[38] K. L. Shlager and J. B. Schneider, "Relative accuracy of several finite-difference time-domain schemes," in IEEE AP-S/URSI Int. Symp. Dig., 1999, pp. 168-171.
[39] J. G. Maloney, K. L. Shlager, and G. S. Smith, "A simple FDTD model for transient excitation of antennas by transmission lines," IEEE Trans. Antennas Propagat., vol. 42, no. 2, Feb. 1994.
[40] G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans. Electromag. Compat., vol. EMC-23, pp. 377-382, Nov, 1981.
[41] J. E. Goell, "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J., vol. 48, pp. 2133-3160, Sept. 1969.
[42] T. Itoh, Dielectric Waveguide-Type Millimeter-Wave Integrated Circuits. New York: Academic, 1981.
[43] R. M. Knox and P. P. Toulios, "Integrated circuits for the millimeter through optical frequency range," in Proc. Symp. Submillimeter Waves. Pol. Inst. of Brooklyn, 1970, pp. 497-516.
[44] J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computat. Phys., vol. 114, pp. 185-200, 1994.
[45] S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propagat., vol. 44, no. 12, pp. 1630-1639, Dec. 1996.
[46] Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat., vol. 43, pp. 1460 –1463, Dec. 1995.
[47] J. P. Berenger, "An effective PML for the absorption of evanescent waves in waveguides," IEEE Microwave and Guided Wave Lett., vol. 8, no. 5, May 1998.
[48] J. P. Berenger, "Evanescent waves in PML's: origin of the numerical reflection inwave-structure interaction problems," IEEE Trans. Antennas Propagat., vol. 47, no. 10, pp. 1497-1503, Oct. 1999.
[49] E. Bécache, P. G. Petropoulos, and S. D. Gedney, "On the long-time behavior of unsplit perfectly matched layers," IEEE Trans. Antennas Propagat., vol. 52, no. 5, pp. 1335-1342, May 2004.
[50] J. A. Roden and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Tech. Lett., vol. 27, no. 5, pp. 334-339, Dec. 2000.
[51] R. J. Luebbers and F. Hunsberger, "FDTD for Nth-order dispersive media," IEEE Trans. Antennas and Propagat., vol. 40, no. 11, pp. 1297-1301, Nov. 1992.
[52] S. Lim, C. Caloz, and T. Itoh, "A redlecto-directive system using a composite right/left-handed (CRLH) leaky-wave antenna and heterodyne mixing," IEEE Microwave and Wireless Compon. Lett, vol. 14, no.4, pp. 183-185, April 2004.
[53] I. Lin, C. Caloz, and T. Itoh, "A branch-line coupler with two arbitrary operating frequencies using left-handedd transmission lines," in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 325-327.
[54] J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett, vol. 85, pp. 3966-3969, Oct. 2000.
[55] A. Sanada, C. Caloz, and T. Itoh, "Zeroth order resonance in composite right/left-handed transmission line resonators," in Asia-Pacific Microwave Conf., 2003, pp. 1588-1592.
[56] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, vol. 292, pp. 77-79, April 2001.
[57] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, vol. 84, pp. 4184-4187, May 2000.
[58] A. Lai, "Theory and design of composite right/left-handed metamaterial-based microwave lenses," Master thesis, Dept. E. E., UCLA, Los Angeles, CA, 2005.
[59] D. Schurig and D. R. Smith, "Universal description of spherical aberration free lenses composed of positive or negative index media," ArXiv Physics e-Prints, 0307088,July 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code