Responsive image
博碩士論文 etd-0619112-174410 詳細資訊
Title page for etd-0619112-174410
論文名稱
Title
應用智慧型最大功率追蹤控制於再生能源發電系統
Implementation of Intelligent Maximum Power Point Tracking Control for Renewable Power Generation Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-12
繳交日期
Date of Submission
2012-06-19
關鍵字
Keywords
燃電電池發電系統、風力發電系統、太陽能發電系統、靜態虛功補償器、最大功率追蹤控制、徑向基底類神經網路-滑模控制、廣義迴歸類神經網路
Radial Basis Function Network-Sliding Mode Control, static var compensator (SVC), fuel cell (FC) power system, General Regression Neural Network, photovoltaic (PV) power system, maximum power tracking control (MPPT), wind powersystem
統計
Statistics
本論文已被瀏覽 5762 次,被下載 256
The thesis/dissertation has been browsed 5762 times, has been downloaded 256 times.
中文摘要
本文探討由太陽能、風渦輪機與燃料電池混合發電系統建立而成之微電網及其運轉性能,此系統包含太陽能發電系統、風力發電系統、燃料電池發電系統、靜態虛功補償器以及智慧型控制器。風機和太陽能為提供給系統的主要能源,而燃料電池電解槽作為提供給系統的備份能源且為一長期的儲存裝置。本文利用MATLAB/Simulink來建立微電網控制的混合發電系統並模擬分析,及應用靜態虛功補償器提供系統無效功率,來調整混合發電系統的電壓。為了使混合發電系統皆可操作在最大功率點以及系統實功率快速達到穩定的響應,本文提出的智慧型控制器,包含廣義迴歸類神經網路(General Regression Neural Network, GRNN)與徑向基底類神經網路-滑模控制(Radial Basis Function Network-Sliding Mode Control, RBFNSMC),將其應用於風力發電系統與太陽能發電系統之最大功率追蹤。其中風力發電系統之葉片旋角控制器是利用徑向基底類神經網路-滑模控制器,由控制器輸出的旋角,來控制風力渦輪機的輸出功率及發電機輸出功率,以達到最大功率追蹤。而太陽能發電系統則利用廣義迴歸類神經網路控制器,由控制器輸出信號來控制直流/直流控昇壓器,以達到最大功率輸出。
Abstract
This thesis discusses the modeling of a micro-grid with photovoltaic (PV)-wind-fuel cell (FC) hybrid energy system and its operations. The system consists of the PV power, wind power, FC power, static var compensator (SVC) and an intelligent power controller. Wind and PV are primary power sources of the system, and an FC-electrolyzer combination is used as a backup and a long-term storage system. A simulation model for the micro-grid control of hybrid energy system has been developed using MATLAB/Simulink. A SVC was used to supply reactive power and regulate the voltage of the hybrid system. To achieve a fast and stable response for the real power control, the intelligent controller consists of a Radial Basis Function Network-Sliding Mode Control (RBFNSM) and a General Regression Neural Network (GRNN) for maximum power point tracking (MPPT). The pitch angle of wind turbine is controlled by RBFNSM, and the PV system uses GRNN, where the output signal is used to control the DC/DC boost converters to achieve the MPPT.
目次 Table of Contents
摘要 .................................................................................................................................. i
Abstract ........................................................................................................................... ii
目錄 ................................................................................................................................ iii
圖目錄 ............................................................................................................................ vii
表目錄 ............................................................................................................................ xii
第一章 緒論 .................................................................................................................... 1
1.1 研究背景 ........................................................................................................... 1
1.2 研究動機 ........................................................................................................... 2
1.3 本論文貢獻 ....................................................................................................... 3
1.4 論文架構 ........................................................................................................... 3
第二章 混合發電系統之模型與原理 ............................................................................ 5
2.1 風力發電系統介紹 ........................................................................................... 5
2.1.1 風能簡介 ................................................................................................ 5
2.1.2 風力機發電原理 .................................................................................... 5
2.1.3 風力發電系統控制原理 ........................................................................ 8
2.1.4 感應發電機基本原理 ............................................................................ 9
2.1.5 感應發電機之數學模型分析 ................................................................ 9
2.1.6 風力發電系統之工作模式 .................................................................. 14
2.2 太陽能發電系統介紹 ..................................................................................... 15
2.2.1 太陽能簡介 ........................................................................................... 15
2.2.2 太陽能電池特性 ................................................................................... 15
2.2.3 太陽能模組 ........................................................................................... 16
2.2.4 太陽能發電系統之工作模式 ............................................................... 21
2.3 燃料電池發電系統介紹 ................................................................................. 22
2.3.1 燃料電池簡介 ...................................................................................... 22
2.3.2 燃料電池種類 ...................................................................................... 22
2.3.3 燃料電池之動作原理與特性 .............................................................. 24
2.3.4 燃料電池發電系統之工作模式 .......................................................... 28
2.4 升壓型直流/直流轉換器與直流/交流轉換器模型 ....................................... 29
2.4.1 升壓型直流/直流轉換器模型 ............................................................. 29
2.4.2 直流/交流轉換器模型 ......................................................................... 31
2.4.3 電流控制器 .......................................................................................... 33
2.4.4 直流/交流轉換器之d-q 軸數學模型 ................................................. 34
2.4.5 直流/交流轉換器之a-b-c 軸數學模型 .............................................. 35
第三章 靜態虛功補償器之原理與分析 ...................................................................... 36
3.1 前言 ................................................................................................................. 36
3.2 各式靜態虛功補償器之簡介 ......................................................................... 36
3.3 靜態虛功補償器之原理與特性分析 ............................................................. 39
3.4 靜態虛功補償器之控制器設計 ..................................................................... 42
第四章 智慧型控制器之理論與應用 .......................................................................... 43
4.1 類神經網路簡介 ............................................................................................. 43
4.2 類神經網路控制架構 ..................................................................................... 43
4.3 廣義迴歸類神經網路之原理與架構 ............................................................. 46
4.3.1 廣義迴歸類神經網路之簡介 .............................................................. 46
4.3.2 廣義迴歸類神經網路之原理 .............................................................. 46
4.3.3 廣義迴歸類神經網路之平滑參數 ...................................................... 50
4.4 類神經網路滑模變結構控制之原理與架構 .................................................. 52
4.4.1 滑模變結構控制之簡介與原理 .......................................................... 52
4.4.2 徑向基底類神經網路之簡介與原理 .................................................. 54
4.4.3 徑向基底類神經網路-滑模控制器之原理 ......................................... 55
第五章 混合發電之最大功率追蹤控制 ...................................................................... 59
5.1 前言 ................................................................................................................. 59
5.2 風力發電系統之最大功率追蹤設計原理 ...................................................... 59
5.2.1 旋角控制之設計原理 ........................................................................... 59
5.2.2 比例-積分之旋角控制 .......................................................................... 59
5.2.3 RBFNSM 控制器於旋角控制之設計 ................................................. 61
5.3 太陽能發電系統之最大功率追蹤設計原理 .................................................. 62
5.3.1 太陽能發電系統之最大功率追蹤控制 ............................................... 62
5.3.2 廣義迴歸類神經網路最大功率追蹤之設計 ....................................... 63
第六章 混合發電系統之模擬結果 .............................................................................. 64
6.1 前言 ................................................................................................................. 64
6.2 混合發電系統架構 .......................................................................................... 64
6.3 市電並聯型模擬與驗證 ................................................................................. 65
6.3.1 市電併聯型燃電-風機混合發電系統 .................................................. 65
6.3.2 市電併聯型燃電-太陽能混合發電系統 .............................................. 69
6.3.3 市電併聯型太陽能-風能混合發電系統 .............................................. 73
6.3.4 市電併聯型太陽能-風能-燃電混合發電系統 .................................... 76
6.3.5 市電併聯型最大功率追蹤之測試比較 .............................................. 80
6.4 獨立運轉型模擬與驗證 .................................................................................. 84
6.4.1 獨立運轉型太陽能-風機-燃電混合發電系統 ................................... 84
6.4.2 獨立運轉型最大功率追蹤之測試比較 .............................................. 87
6.5 穩態模擬分析 ................................................................................................. 90
6.5.1 太陽照度變化影響分析 ...................................................................... 90
6.5.2 風速變化影響分析 .............................................................................. 91
6.5.3 負載變化下併聯靜態虛功補償器之模擬分析 .................................. 93
6.5.4 能源管理模擬分析 .............................................................................. 95
6.6 事故模擬分析 ................................................................................................. 99
6.6.1 三相短路分析 ...................................................................................... 99
6.6.2 太陽能發電系統事故跳脫分析 ........................................................ 101
6.6.3 風力發電系統事故跳脫分析 ............................................................ 103
第七章 結論與未來研究方向 .................................................................................... 105
7.1 結論 ....................................................................................................... 105
7.2 未來研究方向 ....................................................................................... 106
參考文獻 ...................................................................................................................... 107
參考文獻 References
[1] S. R. Bull, “Renewable Energy Today and Tomorrow,” Proceedings of the IEEE, vol. 89, issue. 8, pp. 1216-1226, 2001.
[2] D. J. Cox and T.Davis, “Distributed Generation and Sensing for Intelligent Distributed Microgrids,” IEEE/SMC International Conference on System of Systems Engineering, Los Angeles, California, pp.5, April 2006.
[3] R. H. Lasseter, “Microgrids,” IEEE Power Engneering Society Winter Meeting, vol. 1, pp. 305-308, Jan. 2002.
[4] J. G. Slootweg, S. W. H. de Hann, H. Polinder and W. L. Kling, “General Model for Representing Variable Speed Wind Turbines in Power System Dynamics Simulations,” IEEE Transactions Power Systems, vol. 18, no. 1, pp. 144-151, Feb. 2003.
[5] “SimPowerSystems for Use with Simulink,” MATLAB, 2009.07
[6] A. Grauers, “Efficiency of three wind energy generator systems,” IEEE Transactions Energy Conversion, vol. 11, no. 3, pp. 650-657, 1996.
[7] T. Markvart and John Willy&Sons, “Solar Electricity,” 1995.
[8] F. Nakanishi, T. Ikegami, K. Ebihara, S. Kuriyama and Y. Shiota, “Modeling and Operation of a 10kW Photovoltaic Power Generator Using Equivalent Electric Circuit Method,” Photovoltaic Specialists Conference, pp. 1703-1706, 2000.
[9] K. Bose, P. M. Szczesny and R. L. Steigerwald, “Microcomputer control of A Residential Photovoltaic Power Condition System ,” IEEE Transactions on Industry Application, vol. 1A-21, no. 5, 1985.
[10] A. D. Hansen, P. Srensen, L. H. Hansen and H. BIndner, “Models for Stand-Alone PV System,” Riso National Laboratory, 2001.
[11] 林群峰,“以分散式太陽能發電系統為主之微電網”,台灣科技大學論文,民國九十六年。
[12] 李政勳,“小型太陽光能能量轉換系統之研製”,國立中山大學碩士論文,民國九十年。
[13] 包濬瑋,“太陽光發電系統運轉性能評估”,中原大學碩士論文,民國九十一年。
[14] K. H. Hussein, I. Muta, T. Hoshino and M. Osakada, “Maximum Photovoltaic Power Tracking: an Algorimthon for Rapidly Changing Atmospheric Conditions,” IEEE proc. Gener. Transm. Distrib, vol. 142, no. 1, pp. 59-64, Jan. 1995.
[15] 財團法人台灣經濟研究院 台灣燃料電池資訊網。
[16] Frano Barbir, “PEM Fuel Cells:Theory and Practice,” AmsterdamBoston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo, Chapter 1-3, 2005.
[17] E. Brillas, F. Alcaide and P. Cabot, ”A small-scale flow alkaline fuel cell for on-site production of hydrogen peroxide,“ Electrochimica Acta vol. 48, issue. 4, pp. 331-340, 2002.
[18] H. Kobayashi, K. Takigawa, E. Hadhimoto and A. Kitamura, “Problems and Conutermeasures on Safety of Utility Grid with a Number of Small-Scale PV system, ” Proceeding of IEEE Photovoltaic Specialists Conference, pp. 850-855, 1990.
[19] F. Antunes and A. M. Torres, “A three-phase grid-connected PV system,” Industrial Electronics Society, 2000. IECON 2000. 26th Annual Conference of the IEEE, vol. 1, pp. 723-728, 2000.
[20] K. H. Koh, H. W. Lee, K. Y. Suh, K. Takashi and K. Taniguchi, “The Power Factor Control System of Photovoltaic Power Generation System, ” IEEE Power Conversion Conference, vol. 2, pp. 643-646, Feb. 1998.
[21] Zunko, Povh and Weinhold, “Basic control of UPFC”, IEEE Transaction on Power Systems, vol. 12, no. 4, pp. 1734-1739, Nov. 97.
[22] 盧強與孫原章,“電力系統非線性控制”,科學出版社,民國八十二年。
[23] 葉瑞仁,“靜態虛功補償器之研究”,國立台灣大學電機工程學研究所碩士學位論文,民國八十五年六月。
[24] 張添嘉,“裝設靜態虛功補償器之汽電共生廠的穩定度分析”,國立中山大學電機研究所碩士論文,民國八十三年。
[25] 周鵬程,“類神經網路入門”,全華科技圖書股份有限公司,民國九十五年一月。
[26] D.F. Specht, “Probabilistic Neural Network for Classification, Mapping, or Associative Memory, ” Proc. IEEE Int. Conf. Neural Network, San Diego, CA, vol.1, pp. 525-532, July 1988.
[27] Specht, D. F., “A General Regression Neural Network,”IEEE Transaction on Neural Network, pp. 568-576, 1991.
[28] Lin S C and Park J K., “RBF Network Based Sliding Mode Control,”IEEE International Conference on Systems, Man, and Cybernetics, pp.1957-1961, 1998.
[29] Munoz D and Sbarbaro D., “An Adaptive Sliding-Mode Controller for Discrete Nonlinear Systems,”IEEE Transactions on Industrial Electronics, pp. 574-581, 2000.
[30] 洪志明,“智慧型無轉速感測器之風力發電系統最大功率追蹤控制”,國立中山大學電機工程學研究所博士學位論文,民國一百年八月。
[31] 張簡南益,“以智慧型控制理論為基礎之太陽能與柴油-風力複合發電功率控制系統之研製”,國立中山大學電機工程學研究所碩士學位論文,民國九十九年六月。
[32] 李春林、歐庭嘉與李昭德,“直流電力系統混合再生能源於智慧型家電之應用”,行政院原子委員會核能研究所,2008年電力工程研討會。
[33] Caisheng Wang, Nehrir and M.H.,“Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System,”IEEE Transactions on Energy Conversion, vol. 23, pp. 957-967, Sept. 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code