Responsive image
博碩士論文 etd-0619113-005536 詳細資訊
Title page for etd-0619113-005536
論文名稱
Title
開發分子信籤感測器偵測肝素與三聚體去氧核醣核酸結合物
Development of molecular beacon-based sensors for detecting heparin and triplex deoxyribonucleic acid binders
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-10
繳交日期
Date of Submission
2013-07-19
關鍵字
Keywords
肝素、三聚體去氧核醣核酸結合物、分子信籤
Molecular beacon, Triplex DNA binders, Heparin, Coralyne
統計
Statistics
本論文已被瀏覽 5685 次,被下載 0
The thesis/dissertation has been browsed 5685 times, has been downloaded 0 times.
中文摘要
本篇研究設計分子信籤(Molecular beacon,MB)探針,分別在5'和3'端以共價鍵連結螢光試劑和消光團,當加入分析物後,可誘導分子信籤的構型改變,並造成螢光訊號的差異,藉此應用於偵測肝素和篩選三聚體去氧核醣核酸結合物。
(一) 利用分子信籤為基礎的感測器來偵測人類血漿中的肝素:
肝素(Heparin)是一種具有多負電荷的葡萄糖胺多聚醣(Glycoaminoglycan),在臨床上,常作為心血管手術的抗凝血劑,或者用於治療急性冠心症和預防靜脈血栓塞的發生。若是使用過量,可能造成出血或血小板減少等症狀,故需要一個準確且可靠的偵測方法,來密切監控其濃度變化就顯得相當重要。因此,本實驗去設計一個高選擇性、靈敏度且簡單快速的分子信籤來偵測肝素。分子信籤的Loop端含有22個鹼基,而Stem端含有12個腺嘌呤(Adenine, A )鹼基,並於5'和3'端分別修飾上螢光團(Carboxyfluorescein,FAM)和消光劑(4-(4-dimethyl-aminophenyl)diazenylbenzoic acid,DABCYL),透過與Coralyne產生A2-coralyne-A2的反應,使分子信籤形成髮夾彎(Hairpin)結構,造成螢光試劑與消光劑相互碰撞,而螢光降低;當含有肝素時,可藉由靜電作用力將帶有正電荷的Coralyne置換出來,使分子信籤的髮夾彎結構被打開,造成螢光的恢復,利用此螢光回復值來對肝素進行定量,線性範圍為0.18 ~1.8 μg/mL,偵測極限值為60 ng/mL。此外,也可成功偵測人類血漿樣品中的肝素,並獲得其線性範圍為14.4 ~72 μg/mL ,偵測極限值為10 ng/mL。代表本感測器不僅具有高靈敏度、選擇性且可在複雜基質中成功偵測肝素。
(二) 設計分子信籤探針來篩選三聚體去氧核醣核酸結合物:
由於DNA經由轉錄、轉譯後會形成蛋白質,但若是DNA鹼基有突變發生,則可能造成蛋白質功能缺陷並造成疾病。因此,如果能在DNA轉錄過程中,將其與第三條寡核苷酸鏈結合,形成三股螺旋結構之DNA,就會抑制其轉錄過程,使疾病不會表現出來。但因為三股螺旋結構之DNA的磷酸骨架含有高負電荷,會使三股螺旋結構不易形成,故可藉由加入三聚體去氧核醣核酸結合物(Triplex DNA binders),誘導並穩定三股螺旋DNA結構,故篩選Triplex DNA binders是一件重要的工作。因此本實驗設計分子信籤的Loop端含有15個鹼基,Stem端含有為8個胸腺嘧啶( Thymine, T ),並在5'和3'端分別修飾上螢光試劑(FAM)和消光劑(DABCYL)。由於Coralyne是個典型的Triplex DNA binders,故當分子信籤探針與去氧腺嘌呤寡核苷酸(Poly An)反應,並且加入Coralyne後,會使分子信籤的Stem端形成T=A˙T鹼基配對之三股螺旋結構,促使螢光試劑與消光團消互靠近,而造成螢光強度值下降,並透過探討Poly An序列的長度、濃度、緩衝溶液的鹽類濃度和pH值,可得到篩選Triplex DNA binders的最佳化條件。此外,利用圓二色光譜法和紫外光/可見光熔點實驗也成功證實其三股螺旋DNA結構的形成。最後將其應用於篩選可能成為Triplex DNA binders的結合物,並藉由其螢光淬息的程度,評估誘導和穩定三股螺旋結構的能力,從實驗結果得知除了Coralyne具有誘導形成三股螺旋結構的能力外,Sanguinarine也有作為Triplex DNA binders的潛力。因此,利用此螢光偵測的方式,即可簡易且快速地進行篩選。
Abstract
None
目次 Table of Contents
謝誌................................................................................................................................... i
摘要.................................................................................................................................. ii
目錄................................................................................................................................. iv
圖目錄............................................................................................................................ vii
表目錄........................................................................................................................... viii
縮寫表............................................................................................................................. ix
第一章、緒論.................................................................................................................. 1
一、前言.................................................................................................................. 1
1-1 核酸簡介.................................................................................................... 1
1-2 分子信籤簡介........................................................................................... 2
1-3 分子信籤的結構....................................................................................... 2
1-4 分子信籤的作用機制............................................................................... 3
1-5 分子信籤的熱變性研究........................................................................... 3
1-6 分子信籤的應用....................................................................................... 4
1-6-1 即時監控聚合酶鏈鎖反應 (Real-time PCR monitoring)............ 4
1-6-2 基因突變之檢測........................................................................... 4
1-6-3 研究DNA 與蛋白質之交互作用................................................. 5
1-6-4 活體細胞內RNA 的偵測............................................................. 5
1-6-5 應用於核酸生物感測器和DNA 晶片......................................... 6
1-7 新型的分子信籤....................................................................................... 6
二、研究動機.......................................................................................................... 7
第二章、利用分子信籤為基礎的感測器來偵測人類血漿中的肝素.......................... 8
一、前言.................................................................................................................. 8
二、實驗部分........................................................................................................ 11
v
2-1 實驗藥品................................................................................................. 11
2-2 儀器裝置.................................................................................................. 13
2-3 樣品配製方法......................................................................................... 14
2-4 實驗過程.................................................................................................. 15
三、結果與討論.................................................................................................... 16
3-1 感測機制的建立...................................................................................... 16
3-2 探討最佳化Coralyne 濃度和反應時間................................................ 17
3-3 探討形成髮夾彎結構之分子信籤的熔點............................................. 17
3-4 探討NaCl 濃度對形成髮夾彎結構之分子信籤的影響...................... 20
3-5 探討pH 值對形成髮夾彎結構之分子信籤的影響.............................. 20
3-5 髮夾彎結構之分子信籤應用於偵測肝素及反應時間的探討............. 23
3-6 肝素加入髮夾彎結構之分子信籤中對熔點之影響............................. 25
3-7 探討不同NaCl 濃度對偵測肝素之影響.............................................. 25
3-8 選擇性探討............................................................................................. 28
3-9 肝素的定量分析..................................................................................... 28
3-10 人類血漿樣品中肝素的定量分析....................................................... 32
四、結論................................................................................................................ 35
第三章、設計分子信籤探針來篩選三聚體去氧核醣核酸結合物............................ 37
一、前言................................................................................................................ 37
1-1 三股螺旋DNA 簡介.............................................................................. 37
1-2 三股螺旋DNA 結構.............................................................................. 37
1-3 三股螺旋DNA 的重要性...................................................................... 38
1-4 研究動機................................................................................................. 40
二、實驗部分........................................................................................................ 42
2-1 實驗藥品................................................................................................. 42
2-2 儀器裝置.................................................................................................. 45
vi
2-3 樣品配製方法......................................................................................... 46
2-4 實驗過程.................................................................................................. 47
三、結果與討論.................................................................................................... 48
3-1 感測機制的建立...................................................................................... 48
3-2 分子信籤應用於偵測Coralyne 以及熔點探討.................................... 49
3-3 以圓二色光譜法和紫外光-可見光熔點實驗偵測三股螺旋結構........ 51
3-3 探討Poly An 之長度................................................................................ 54
3-4 探討Poly A7 之濃度............................................................................... 54
3-5 探討NaCl 濃度之影響.......................................................................... 54
3-6 探討pH 值之影響.................................................................................. 58
3-7 篩選Triplex DNA binders...................................................................... 58
3-8 以分子信籤偵測Sanguinarine............................................................... 61
四、結論................................................................................................................ 67
第四章、參考文獻........................................................................................................ 68
參考文獻 References
1. https://biowikikoons.wikispaces.com/DNA+Unit+AP+Biology.

2. http://www.molecularstation.com/molecular-biology-images/502-dna-pictures/5-
the-chemical-structure-of-dna.html.

3. Tyagi, S.; Kramer, F. R., Molecular beacons: probes that fluoresce upon hybridization. Nature biotechnology 1996, 14 (3), 303-8.

4. Tyagi, S.; Bratu, D. P.; Kramer, F. R., Multicolor molecular beacons for allele discrimination. Nature biotechnology 1998, 16 (1), 49-53.

5. Doherty, A. J.; Suh, S. W., Structural and mechanistic conservation in DNA ligases. Nucleic acids research 2000, 28 (21), 4051-8.

6. Zirvi, M.; Nakayama, T.; Newman, G.; McCaffrey, T.; Paty, P.; Barany, F., Ligase-based detection of mononucleotide repeat sequences. Nucleic acids research 1999, 27 (24), e40.

7. Dubertret, B.; Calame, M.; Libchaber, A. J., Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature biotechnology 2001, 19 (4), 365-70.

8. Goel, G.; Kumar, A.; Puniya, A. K.; Chen, W.; Singh, K., Molecular beacon: a multitask probe. Journal of applied microbiology 2005, 99 (3), 435-42.

9. http://en.wikipedia.org/wiki/Molecular_beacon.

10. Wang, K.; Tang, Z.; Yang, C. J.; Kim, Y.; Fang, X.; Li, W.; Wu, Y.; Medley, C. D.; Cao, Z.; Li, J.; Colon, P.; Lin, H.; Tan, W., Molecular engineering of DNA: molecular beacons. Angewandte Chemie (International ed. in English) 2009, 48 (5), 856-70.

11. Bonnet, G.; Tyagi, S.; Libchaber, A.; Kramer, F. R., Thermodynamic basis of the enhanced specificity of structured DNA probes. Proceedings of the National Academy of Sciences of the United States of America 1999, 96 (11), 6171-6.

12. http://www.molecular-beacons.org/MB_SC_protocol.html.

13. Li, Q.-G.; Liang, J.-X.; Luan, G.-Y.; Zhang, Y.; Wang, K., Molecular Beacon-Based Homogeneous Fluorescence PCR Assay for the Diagnosis of Infections Diseases. Analytical Sciences 2000, 16 (2), 245-248.

14. Saha, B. K.; Tian, B.; Bucy, R. P., Quantitation of HIV-1 by real-time PCR with a unique fluorogenic probe. Journal of virological methods 2001, 93 (1-2), 33-42.

15. Chen, W.; Martinez, G.; Mulchandani, A., Molecular beacons: a real-time polymerase chain reaction assay for detecting Salmonella. Analytical biochemistry 2000, 280 (1), 166-72.

16. Pierce, K. E.; Rice, J. E.; Sanchez, J. A.; Brenner, C.; Wangh, L. J., Real-time PCR using molecular beacons for accurate detection of the Y chromosome in single human blastomeres. Molecular human reproduction 2000, 6 (12), 1155-1164.

17. Fortin, N. Y.; Mulchandani, A.; Chen, W., Use of real-time polymerase chain reaction and molecular beacons for the detection of Escherichia coli O157:H7. Analytical biochemistry 2001, 289 (2), 281-8.

18. Thelwell, N.; Millington, S.; Solinas, A.; Booth, J.; Brown, T., Mode of action and application of Scorpion primers to mutation detection. Nucleic acids research 2000, 28 (19), 3752-61.

19. Kostrikis, L. G.; Tyagi, S.; Mhlanga, M. M.; Ho, D. D.; Kramer, F. R., Spectral genotyping of human alleles. Science (New York, N.Y.) 1998, 279 (5354), 1228-1229.

20. Rhee, J. T.; Piatek, A. S.; Small, P. M.; Harris, L. M.; Chaparro, S. V.; Kramer, F. R.; Alland, D., Molecular epidemiologic evaluation of transmissibility and virulence of Mycobacterium tuberculosis. Journal of clinical microbiology 1999, 37 (6), 1764-70.

21. Piatek, A. S.; Tyagi, S.; Pol, A. C.; Telenti, A.; Miller, L. P.; Kramer, F. R.; Alland, D., Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nature biotechnology 1998, 16 (4), 359-63.

22. Giesendorf, B. A.; Vet, J. A.; Tyagi, S.; Mensink, E. J.; Trijbels, F. J.; Blom, H. J., Molecular beacons: a new approach for semiautomated mutation analysis. Clinical chemistry 1998, 44 (3), 482-6.

23. Vogelstein, B.; Kinzler, K. W., Digital PCR. Proceedings of the National Academy of Sciences of the United States of America 1999, 96 (16), 9236-41.

24. Biggins, J. B.; Prudent, J. R.; Marshall, D. J.; Ruppen, M.; Thorson, J. S., A continuous assay for DNA cleavage: the application of "break lights" to enediynes, iron-dependent agents, and nucleases. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (25), 13537-42.

25. Matsuo, T., In situ visualization of messenger RNA for basic fibroblast growth factor in living cells. Biochimica et biophysica acta 1998, 1379 (2), 178-84.

26. Sokol, D. L.; Zhang, X.; Lu, P.; Gewirtz, A. M., Real time detection of DNA.RNA hybridization in living cells. Proceedings of the National Academy of Sciences of the United States of America 1998, 95 (20), 11538-43.

27. Perez, J. W.; Haselton, F. R.; Wright, D. W., Viral detection using DNA functionalized gold filaments. Analyst 2009, 134 (8), 1548-1553.

28. Kam, Y.; Rubinstein, A.; Nissan, A.; Halle, D.; Yavin, E., Detection of endogenous K-ras mRNA in living cells at a single base resolution by a PNA molecular beacon. Molecular pharmaceutics 2012, 9 (3), 685-93.

29. Wang, L.; Yang, C. J.; Medley, C. D.; Benner, S. A.; Tan, W., Locked nucleic acid molecular beacons. Journal of the American Chemical Society 2005, 127 (45), 15664-5.

30. Li, J. J.; Fang, X.; Tan, W., Molecular aptamer beacons for real-time protein recognition. Biochemical and biophysical research communications 2002, 292 (1), 31-40.

31. Venkatesan, N.; Seo, Y. J.; Kim, B. H., Quencher-free molecular beacons: a new strategy in fluorescence based nucleic acid analysis. Chemical Society reviews 2008, 37 (4), 648-63.
32. Yamamoto, R.; Baba, T.; Kumar, P. K., Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes to cells : devoted to molecular & cellular mechanisms 2000, 5 (5), 389-96.

33. Tan, L.; Li, Y.; Drake, T. J.; Moroz, L.; Wang, K.; Li, J.; Munteanu, A.; Chaoyong, J. Y.; Martinez, K.; Tan, W., Molecular beacons for bioanalytical applications. Analyst 2005, 130 (7), 1002-5.

34. Marras, S. A., Interactive fluorophore and quencher pairs for labeling fluorescent nucleic acid hybridization probes. Molecular biotechnology 2008, 38 (3), 247-55.

35. Yang, R.; Jin, J.; Long, L.; Wang, Y.; Wang, H.; Tan, W., Reversible molecular switching of molecular beacon: controlling DNA hybridization kinetics and thermodynamics using mercury(ii) ions. Chemical communications (Cambridge, England) 2009, (3), 322-4.

36. Lin, Y. W.; Ho, H. T.; Huang, C. C.; Chang, H. T., Fluorescence detection of single nucleotide polymorphisms using a universal molecular beacon. Nucleic acids research 2008, 36 (19), e123.

37. Wang, Y.; Li, J.; Wang, H.; Jin, J.; Liu, J.; Wang, K.; Tan, W.; Yang, R., Silver ions-mediated conformational switch: facile design of structure-controllable nucleic acid probes. Analytical chemistry 2010, 82 (15), 6607-12.

38. Lin, Y. H.; Tseng, W. L., A room-temperature adenosine-based molecular beacon for highly sensitive detection of nucleic acids. Chemical communications (Cambridge, England) 2012, 48 (50), 6262-4.

39. Bourdoncle, A.; Estevez Torres, A.; Gosse, C.; Lacroix, L.; Vekhoff, P.; Le Saux, T.; Jullien, L.; Mergny, J. L., Quadruplex-based molecular beacons as tunable DNA probes. Journal of the American Chemical Society 2006, 128 (34), 11094-105.

40. Ono, A.; Togashi, H., Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angewandte Chemie (International ed. in English) 2004, 43 (33), 4300-2.

41. Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y., Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chemical communications (Cambridge, England) 2008, (39), 4825-7.

42. Xu, H.; Hepel, M., "Molecular beacon"-based fluorescent assay for selective detection of glutathione and cysteine. Analytical chemistry 2011, 83 (3), 813-9.

43. Stobiecka, M.; Molinero, A. A.; Chalupa, A.; Hepel, M., Mercury/homocysteine ligation-induced ON/OFF-switching of a T-T mismatch-based oligonucleotide
molecular beacon. Analytical chemistry 2012, 84 (11), 4970-8.

44. Persil, O.; Santai, C. T.; Jain, S. S.; Hud, N. V., Assembly of an antiparallel homo-adenine DNA duplex by small-molecule binding. Journal of the American Chemical Society 2004, 126 (28), 8644-5.

45. Warkentin, T. E.; Levine, M. N.; Hirsh, J.; Horsewood, P.; Roberts, R. S.; Gent, M.; Kelton, J. G., Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. The New England journal of medicine 1995, 332 (20), 1330-5.

46. Girolami, B.; Girolami, A., Heparin-induced thrombocytopenia: a review. Seminars in thrombosis and hemostasis 2006, 32 (8), 803-9.

47. Raymond, P. D.; Ray, M. J.; Callen, S. N.; Marsh, N. A., Heparin monitoring during cardiac surgery. Part 1: Validation of whole-blood heparin concentration and activated clotting time. Perfusion 2003, 18 (5), 269-76.

48. Murray, D. J.; Brosnahan, W. J.; Pennell, B.; Kapalanski, D.; Weiler, J. M.; Olson, J., Heparin detection by the activated coagulation time: a comparison of the sensitivity of coagulation tests and heparin assays. Journal of cardiothoracic and vascular anesthesia 1997, 11 (1), 24-8.

49. Volpi, N.; Maccari, F.; Suwan, J.; Linhardt, R. J., Electrophoresis for the analysis of heparin purity and quality. Electrophoresis 2012, 33 (11), 1531-7.

50. Ander, B.; Karlsson, A.; Ohrlund, A., Determination of heparin on intraocular lens surfaces by ion chromatography. Journal of chromatography. A 2001, 917 (1-2), 105-10.
51. Dai, Q.; Liu, W.; Zhuang, X.; Wu, J.; Zhang, H.; Wang, P., Ratiometric fluorescence sensor based on a pyrene derivative and quantification detection of heparin in aqueous solution and serum. Analytical chemistry 2011, 83 (17), 6559-64.

52. Wang, M.; Zhang, D.; Zhang, G.; Zhu, D., The convenient fluorescence turn-on detection of heparin with a silole derivative featuring an ammonium group. Chemical communications (Cambridge, England) 2008, (37), 4469-71.

53. Wang, S.; Chang, Y. T., Discovery of heparin chemosensors through diversity oriented fluorescence library approach. Chemical communications (Cambridge, England) 2008, (10), 1173-5.

54. Zhong, Z.; Anslyn, E. V., A colorimetric sensing ensemble for heparin. Journal of the American Chemical Society 2002, 124 (31), 9014-5.

55. Pu, K.-Y.; Liu, B., Conjugated polyelectrolytes as light-up macromolecular probes for heparin sensing. Advanced Functional Materials 2009, 19 (2), 277-284.

56. Zhan, R.; Fang, Z.; Liu, B., Naked-eye detection and quantification of heparin in serum with a cationic polythiophene. Analytical chemistry 2010, 82 (4), 1326-33.

57. Yan, H.; Wang, H. F., Turn-on room temperature phosphorescence assay of heparin with tunable sensitivity and detection window based on target-induced self-assembly of polyethyleneimine capped Mn-doped ZnS quantum dots. Analytical chemistry 2011, 83 (22), 8589-95.

58. Fu, X.; Chen, L.; Li, J.; Lin, M.; You, H.; Wang, W., Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide. Biosensors & bioelectronics 2012, 34 (1), 227-31.

59. Cao, R.; Li, B., A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Chemical communications (Cambridge, England) 2011, 47 (10), 2865-7.

60. Megyesi, M.; Biczok, L.; Gorner, H., Dimer-promoted fluorescence quenching of coralyne by binding to anionic polysaccharides. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology 2009, 8 (4), 556-61.
61. Kiy, M. M.; Jacobi, Z. E.; Liu, J., Metal-induced specific and nonspecific oligonucleotide folding studied by FRET and related biophysical and bioanalytical implications. Chemistry (Weinheim an der Bergstrasse, Germany) 2012, 18 (4), 1202-8.

62. Joung, I. S.; Persil Cetinkol, O.; Hud, N. V.; Cheatham, T. E., 3rd, Molecular dynamics simulations and coupled nucleotide substitution experiments indicate the nature of A{middle dot}A base pairing and a putative structure of the coralyne-induced homo-adenine duplex. Nucleic acids research 2009, 37 (22), 7715-27.

63. Watson, J. D.; Crick, F. H., Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953, 171 (4356), 737-8.

64. Felsenfeld, G.; Davies, D. R.; Rich, A., Formation of a three-stranded polynucleotide molecule . Journal of the American Chemical Society 1957, 79 (8), 2023-2024.

65. Mirkin, S. M.; Lyamichev, V. I.; Drushlyak, K. N.; Dobrynin, V. N.; Filippov, S. A.; Frank-Kamenetskii, M. D., DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature 1987, 330 (6147), 495-7.

66. Le Doan, T.; Perrouault, L.; Praseuth, D.; Habhoub, N.; Decout, J. L.; Thuong, N. T.; Lhomme, J.; Helene, C., Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-[alpha]-thymidylate covalently linked to an azidoproflavine derivative. Nucleic acids research 1987, 15 (19), 7749-60.

67. Moser, H. E.; Dervan, P. B., Sequence-specific cleavage of double helical DNA by triple helix formation. Science (New York, N.Y.) 1987, 238 (4827), 645-50.

68. Hoyne, P. R.; Gacy, A. M.; McMurray, C. T.; Maher, L. J., 3rd, Stabilities of intrastrand pyrimidine motif DNA and RNA triple helices. Nucleic acids research 2000, 28 (3), 770-5.

69. 粘松木, 奈米生物分子之操作與解析. 國立東華大學應用物理研究所碩士論文 2005.

70. Maine, I. P.; Kodadek, T., Efficient unwinding of triplex DNA by a DNA helicase. Biochemical and biophysical research communications 1994, 204 (3), 1119-24.
71. Lavrovsky, Y.; Stoltz, R. A.; Vlassov, V. V.; Abraham, N. G., c-fos protooncogene transcription can be modulated by oligonucleotide-mediated formation of triplex structures in vitro. European journal of biochemistry / FEBS 1996, 238 (2), 582-90.

72. http://commons.wikimedia.org/wiki/File:3DScience_DNA_structure_labeled_ a.jpg.

73. http://mysteryoftheinquity.files.wordpress.com/2011/03/e52df693ab9634c0
.jpg?w=950.

74. Lin, W.-C.; Kan, L.-S., DNA Triplex. The Chinese Chem. Soc. 2000, 58 (4), 661-670.

75. Haq, I.; Ladbury, J. E.; Chowdhry, B. Z.; Jenkins, T. C., Molecular Anchoring of Duplex and Triplex DNA by Disubstituted Anthracene-9,10-diones:  Calorimetric, UV Melting, and Competition Dialysis Studies. Journal of the American Chemical Society 1996, 118 (44), 10693-10701.

76. Wittung, P.; Nielsen, P.; Nordén, B., Observation of a PNA−PNA−PNA Triplex. Journal of the American Chemical Society 1997, 119 (13), 3189-3190.

77. Lee, J. S.; Latimer, L. J.; Hampel, K. J., Coralyne binds tightly to both T.A.T- and C.G.C(+)-containing DNA triplexes. Biochemistry 1993, 32 (21), 5591-7.

78. Moraru-Allen, A. A.; Cassidy, S.; Asensio Alvarez, J. L.; Fox, K. R.; Brown, T.; Lane, A. N., Coralyne has a preference for intercalation between TA.T triples in intramolecular DNA triple helices. Nucleic acids research 1997, 25 (10), 1890-6.

79. Scaria, P. V.; Shafer, R. H., Binding of ethidium bromide to a DNA triple helix. Evidence for intercalation. The Journal of biological chemistry 1991, 266 (9), 5417-23.

80. Marchand, C.; Bailly, C.; Nguyen, C. H.; Bisagni, E.; Garestier, T.; Helene, C.; Waring, M. J., Stabilization of triple helical DNA by a benzopyridoquinoxaline intercalator. Biochemistry 1996, 35 (15), 5022-32.

81. Silver, G. C.; Sun, J.-S.; Nguyen, C. H.; Boutorine, A. S.; Bisagni, E.; Hélène, C., Stable triple-helical DNA complexes formed by benzopyridoindole− and benzopyridoquinoxaline− oligonucleotide conjugates. Journal of the American Chemical Society 1997, 119 (2), 263-268.

82. Chaires, J. B.; Ren, J.; Hamelberg, D.; Kumar, A.; Pandya, V.; Boykin, D. W.; Wilson, W. D., Structural selectivity of aromatic diamidines. Journal of medicinal chemistry 2004, 47 (23), 5729-42.

83. Rosu, F.; De Pauw, E.; Guittat, L.; Alberti, P.; Lacroix, L.; Mailliet, P.; Riou, J. F.; Mergny, J. L., Selective interaction of ethidium derivatives with quadruplexes: an equilibrium dialysis and electrospray ionization mass spectrometry analysis. Biochemistry 2003, 42 (35), 10361-71.

84. Xu, N.; Yang, H.; Cui, M.; Wan, C.; Liu, S., High-performance liquid chromatography-electrospray ionization-mass spectrometry ligand fishing assay: a method for screening triplex DNA binders from natural plant extracts. Analytical chemistry 2012, 84 (5), 2562-8.

85. Han, M. S.; Lytton-Jean, A. K.; Mirkin, C. A., A gold nanoparticle based approach for screening triplex DNA binders. Journal of the American Chemical Society 2006, 128 (15), 4954-5.

86. Lytton-Jean, A. K.; Han, M. S.; Mirkin, C. A., Microarray detection of duplex and triplex DNA binders with DNA-modified gold nanoparticles. Analytical chemistry 2007, 79 (15), 6037-41.

87. Chen, C.; Song, G.; Yang, X.; Ren, J.; Qu, X., A gold nanoparticle-based strategy for label-free and colorimetric screening of DNA triplex binders. Biochimie 2010, 92 (10), 1416-21.

88. Zhao, C.; Qu, K.; Xu, C.; Ren, J.; Qu, X., Triplex inducer-directed self-assembly of single-walled carbon nanotubes: a triplex DNA-based approach for controlled manipulation of nanostructures. Nucleic acids research 2011, 39 (9), 3939-48.

89. Polak, M.; Hud, N. V., Complete disproportionation of duplex poly(dT)*poly(dA) into triplex poly(dT)*poly(dA)*poly(dT) and poly(dA) by coralyne. Nucleic acids research 2002, 30 (4), 983-92.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.33.178
論文開放下載的時間是 校外不公開

Your IP address is 3.138.33.178
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code