Responsive image
博碩士論文 etd-0619113-160454 詳細資訊
Title page for etd-0619113-160454
論文名稱
Title
液體填充光子晶體光纖之數值模擬分析
Numerical Analysis of Liquid-Filled Photonic Crystal Fibers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-12
繳交日期
Date of Submission
2013-07-23
關鍵字
Keywords
光子晶體光纖、光束傳播法、光控液晶、液晶、折射液
Refractive index liquid, BPM, PCFs, Light-controllable liquid crystal, Liquid crystal
統計
Statistics
本論文已被瀏覽 5708 次,被下載 0
The thesis/dissertation has been browsed 5708 times, has been downloaded 0 times.
中文摘要
我們可以利用改變光子晶體光纖的孔洞大小以及週期間距來得到許多獨特的光學特性,但是製作好的光子晶體光纖,其結構參數已經固定,因此其光學特性難以改變。如果在光子晶體光纖的空氣孔洞內填入可調控的液體材料,便可使光子晶體光纖元件擁有可調變的特性。
本論文中,我們模擬在光子晶體光纖中填入可調控材料,藉由改變可調控材料之折射率並與實驗結果相比較,以得知液體填充光子晶體光纖的傳輸特性以及液晶等效折射率對於外在照光、電場、溫度變化的關聯性。首先我們使用三維光束傳播法模擬液體填充光子晶體的傳輸頻譜,以確認此模擬方法的可行性。接著模擬不同液晶等效折射率的傳輸頻譜,發現當外加電場上升到90V時,由於此區間的電壓太小無法驅使液晶轉動,因此液晶等效折射率差只有小幅度地上升0.025。當外加電場由90V加到200V時,由於此區間的電場足夠拉動液晶排列,導致液晶等效折射率差上升0.063。而當操作溫度由40oC升溫到59oC時,由於此時溫度靠近相變點,造成液晶no急遽地上升,導致液晶等效折射率差大幅增加了0.064。
最後模擬不同等效折射率下的光控液晶光子晶體光纖之傳輸頻譜,我們觀察摻雜不同4MAB濃度的光控液晶混合物發現,當照射藍光時間5秒時,液晶等效折射率差上升趨勢相似,但由於20wt%4MAB濃度之光控液晶混合物其大部分trans態已轉換成cis態,因此在照射藍光時間5到25秒區間,液晶等效折射率差只平緩增加了0.002,而25wt%以及30wt%4MAB濃度的液晶混合物,則在同樣照射時間區間下,其液晶等效折射率差分別增加了0.0062以及0.008。
Abstract
The unique optical properties of photonic crystal fibers (PCFs) are mainly determined by the size and distribution of the air holes in the fiber cladding region. However, it is difficult to modulate the optical properties of fabricated PCFs due to the fixed geometries. By filling index-tunable materials into the air holes of PCFs, we can realize tunable PCFs.
In this thesis, we simulate the optical properties of PCFs filled with index-tunable materials. The relationships between the effective index of the liquid crystal (LCs) and the external environment (illumination, electric field, temperature) are determined. We first use a 3-D beam propagation method (BPM) to simulate the transmission spectra of the photonic liquid crystal fibers (PLCFs). The results show that as the applied voltage is from 0V to 90V, the effective index of LCs raises only 0.025. As the applied voltage is from 90V to 200V, the effective index of LCs increases by 0.063. Next, we demonstrate tunable of the effective index of the LCs by changing the temperature. The effective index of LCs increases rapidly as the operation temperature is from 40oC to 59oC.
We also simulate the transmission spectra of the light-controllable PLCFs with variant 4MAB concentrations. The results show that as the blue-laser irradiation time is 5 seconds, the effective indices of LCs doped with variant concentrations of 4MAB are the same. However, as the blue-laser irradiation time is from 5 to 25 seconds, the effective index of LCs doped with 20wt% 4MAB only increases 0.002. On the contrary, the effective indices of LCs doped with 25wt% and 30wt% 4MAB increase by 0.0062 and 0.008, respectively.
目次 Table of Contents
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
第一章 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-1 光子晶體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1-2 光子晶體光纖介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1-3 液體光子晶體光纖 . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1-4 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
第二章 波束傳播法及其在光纖元件上的模擬應用. . . . . . . . . . . . . .14
2-1 波束傳播法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2-2 光纖干涉儀. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
2-3 中空光纖干涉儀. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
2-3.1 光子晶體光纖的錯位結構. . . . . . . . . . . . . . . . . . . .25
第三章 液體填充光子晶體光纖元件之特性分析. . . . . . . . . . . . . . . .28
3-1 液體填充光子晶體光纖元件之特性模擬. . . . . . . . . . . . . . . . . . .28
3-2 液體填充光子晶體光纖元件之溫度調變特性模擬. . . . . . . . . . .31
3-3 選擇性液體填充光子晶體光纖元件之特性模擬. . . . . . . . . . . . . .32
3-3.1 選擇性液體填充光子晶體光纖濾波器之折射率調變
特性模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
第四章 液晶光子晶體光纖元件之特性分析 . . . . . . . . . . . . . . . .38
4-1 液晶簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4-1.1 液晶光子晶體光纖之外加電場調控特性模擬. . . . . . . .39
4-2 液晶光子晶體光纖之溫度調控特性模擬. . . . . . . . . . . . . . . .43
4-3 不同照射時間下之光控液晶光子晶體光纖之特性模擬. . . . . . . .47
4-4 光控液晶光子晶體光纖之溫度調控特性模擬. . . . . . . . . . . . .57
第五章 結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
參考文獻 References
[1] S. E. Miller, “Integrated optics: an introduction,” Bell Syst. Tech. J., vol. 48, pp. 2059–2068, 1969.
[2] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987.
[3] S. John, “Strong location of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486–2489, 1987.
[4] Y. Kalra, and R. K. Sinha, “Photonic band gap engineering in 2D photonic cryatals,” J. Phys., vol. 67, pp. 1155–1164, 2006.
[5] Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic crystals,” Phys. Rev. Lett., vol. 81, pp. 2074–2577, 1998.
[6] C. Jin, Z. Sun, B. Cheng, Z. Li, and D. Zhang, “Microcavities composed of point defects and waveguides in photonic crystals,” Opt. Commun., vol. 188, pp. 255–260, 2001.
[7] T. D. Happ, M. Kamp, and A. Forchel, “Coupling of point-defect microcavities in two-dimensional photonic-crystal slabs,” J. Opt. Soc. Am. B, vol. 20, pp. 373–378, 2003.
[8] M. Tokushima, and H. Yamada, “Light propagation in a photonic-crystal-slab line-defect waveguide,” IEEE J. Quantum Electron., vol. 38, pp. 753–759, 2002.
[9] S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science, vol. 282, pp. 274–276, 1998.
[10] P. St. J. Russell , “Photonic-crystal fibers,” J. Lightwave Technol., vol. 24, Issue 12, pp. 4729–4749, 2006.
[11] J. C. Knight, T. A. Birks, P. St. Russel, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 1547–1549, 1996.
[12] T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endless single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961–963, 1997.
[13] J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, and J. P. Sandro, “Large mode area photonic crystal fibre,” IEEE Electron Lett., vol. 34, pp. 1347–1348, 1998.
[14] J. C. Knight, J. Arriaga, T. A. Birks, A. Otigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 807–809, 2000.
[15] A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett., vol. 25, pp. 790–792, 2000.
[16] W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett., vol. 16, pp. 843–845, 2004.
[17] T. P. Hansen, J. Broeng, St. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett., vol.13, pp. 588–590, 2001.
[18] B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol., vol. 27, pp. 1617–1630, 2009.
[19] D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers,” J. Lightwave Technol., vol. 24, pp. 3427–3432, 2006.
[20] H. Xuan, W. Jin, M. Zhang, J. Ju, and Y. Liao, “In-fiber polarimeters based on hollow-core photonic bandgap fibers,” Opt. Express, vol. 17, pp. 13246–13254, 2009.
[21] T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express, vol. 11, pp. 2589–2596, 2003.
[22] D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express, vol. 15, pp. 7901–7912, 2007.
[23] D. J. J. Hu, P. Shum, C. Lu, X. Sun, G. Ren, X. Yu, and G. Wang, “Design and analysis of thermal tunable liquid crystal filled hybrid photonic crystal fiber coupler,” Opt. Commun., vol. 282, pp. 2343–2347, 2009.
[24] J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett., vol. 33, pp. 2215–2217, 2008.
[25] R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical fiber communication conference and exhibit (OFC), p.p. 466–468, 2002.
[26] J. W. Doane, N. A. Vaz, B. G. Wu, and S. Žumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett., vol. 48, pp. 269–271, 1986.
[27] J. Li, S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys., vol. 97, pp. 073501-1–073501-5, 2005.
[28] L. Scolari, S. Gauza, H. Xianyu, L. Zhaio, L. Eskildsen, T. Tanggaard, S. T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express, vol. 17, pp. 3754–3764, 2009.
[29] T. T. Larsen, A. Bjarklev, D. S. Hermann, J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express, vol. 11, pp. 2589–2596, 2003.
[30] F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” App. Phys. Lett., vol. 85, pp. 2181–2183, 2004.
[31] F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett., vol. 22, pp. 2589–2596, 1997.
[32] T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, “Excitation transfer from azo dye to nematic host during photoisomerization,” J. Chem. Phys., vol. 107, pp. 9319–9326, 1997.
[33] C. R. Lee, J. D. Lin, Y. J. Huang, S. C. Huang, S. H. Lin, and C. P. Yu, “All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber,” Opt. Express, vol. 19, pp. 9676–9689, 2009.
[34] T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A, vol. 217, pp. 52–58, 1996.
[35] W. P. Huang, and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron., vol. 29, pp. 2639–2649, 1993.
[36] L. Jiang, L. J. Zhao, S. Wang, J. P. Yang, and H. Xiao, “Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment,” Opt. Express, vol. 19, pp. 17591–17598, 2011.
[37] Y. M. Jung, S. J. Lee, B. H. Lee, and K. H. Oh, “Ultracompact in-line broadband Mach–Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide,” Opt. Lett., vol. 33, pp. 2934–2936, 2008.
[38] I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am., vol. 55, pp. 1205–1208, 1965.
[39] J. H. Liu, “Optical properties of selectively liquid-filled photonic crystal fibers,” M. S. Thesis, Department of Photonics, National Sun Yat-sen University, Kaohsiung, Taiwan, June, 2010.
[40] Data from National Sun Yat-sen University, Computational Photonics Lab.
[41] T. H. Chang“Optically controllable long-period fiber gratings in photonic liquid crystal fibers,” M. S. Thesis, Department of Photonics, National Sun Yat-sen University, Kaohsiung, Taiwan, June, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.187.24
論文開放下載的時間是 校外不公開

Your IP address is 18.226.187.24
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code