Responsive image
博碩士論文 etd-0619114-224906 詳細資訊
Title page for etd-0619114-224906
論文名稱
Title
應用PWM原理設計燃料電池之排水控制
PWM controller for water removal on a closed PEM fuel cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-13
繳交日期
Date of Submission
2014-07-20
關鍵字
Keywords
氫氣當量比、脈衝寬度調變、狀態空間平均法、曲線擬合、質子交換膜燃料電池、閉管式
PEM fuel cell, hydrogen excess ratio, closed outlet, pulse width modulation, average state space method, curve fitting
統計
Statistics
本論文已被瀏覽 5689 次,被下載 22
The thesis/dissertation has been browsed 5689 times, has been downloaded 22 times.
中文摘要
本論文主要是提出一個新的操作方式:將原先開管式燃料電池改造為閉管式燃料電池,從控制氫氣輸入流量的方式改為控制氫氣排出流量,並設計控制器使得氫氣在不同的電流負載下仍能排出至最合適的大小。此操作方式具有節省氫氣、提高電池性能與保護電池三大優點。
文中吾人所獲得的開管式燃料電池效能已呈現嚴重衰退,為了找尋衰退原因吾人將其拆開並重組實驗,實驗發現開管式電池在操作時具有先天上的缺陷,提昇氫氣利用率與避免氫氣枯竭無法同時滿足。為了同時達到這兩個目標,吾人將電池加一電磁閥使其為閉管式操作,操作電磁閥控制排出的氫氣流量。閉管式電池排氣的原因是主要是為了排出水氣,避免過多的水氣造成電池內部水氾濫,導致電池性能下降。
為了兼顧排水能力與氫氣利用率,吾人使用氫氣當量比$lambda_{H_2}$ [(輸入的氫氣質量流率)除以(反應的氫氣質量流率)]作為指標函數決定電磁閥開與關的時機。吾人結合了狀態空間平均法與曲線擬合兩種方法建立燃料電池的系統模型,並利用脈衝寬度調變訊號控制電磁閥,設計控制器在負載變動時改變導通比(Duty-ratio)維持$lambda_{H_2}$在目標値。本論文在實際燃料電池實驗上證實,除了有效維持$lambda_{H_2}$在定値保護電池外,也將氫氣利用率由50\%大幅提昇至70\%。
Abstract
In this thesis, we propose a hydrogen outflow regulation strategy for PEM fuel cells. The advantages of the proposed strategy is three-folds: to improve stability of the voltage output, to protect the fuel cell against oxygen reduction reaction (ORR) at the anode which results in water buildup, and to optimize the usage of hydrogen.
  For a conventional "open outlet" fuel cell, the hydrogen excess ratio is usually high because excessively more hydrogen is required in order to prevent fuel starvation. Even with an active feedback inflow regulator, the previous experiments indicate that the excess ratio must be at least 2 in order for the fuel cell to maintain a steady operation. Thus, at least 50\% of the hydrogen is wasted. The waste of hydrogen can be prevented if the anode outlet is closed. This, however, will results in water buildup in the anode outlet. When too much water is stacked in the fuel cell, a phenomenon referred to as "flooding", the electrochemical reaction of hydrogen and oxygen will drop significantly, or even completely shut down.
  In order to reduce the waste of hydrogen and prevent the buildup of water in the anode, we propose a "semi-closed outlet" mechanism by attaching a controlled solenoid valve to the anode outlet which opens and closes the outlet in a timely fashion. More specifically, the solenoid valve is controlled by a pulse-width modulated signal, which is generated by a feedback mechanism that takes into account the current voltage/power output and the water buildup rate. The mechanism is designed in such a way to maintain stable voltage/power output while optimizing the usage of hydrogen and purging the water out of the anode in a timely fashion. The results of experiments indicate that by this approach the utilization of hydrogen is significantly improved and the hydrogen excess ratio is reduced to 1.4, comparing to the suggested value of 11 if the cell is operated in the "open outlet" condition.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 vi
第一章 緒論 1
1.1 前言與背景 1
1.2 燃料電池簡介 3
1.3 文獻回顧 5
1.4 研究動機、目的與貢獻 7
第二章 質子交換膜燃料電池構造、發電原理與理論模型 9
2.1 燃料電池的結構 9
2.2 燃料電池的發電原理 10
2.3 燃料電池的數學模型 12
2.3.1 電池堆電壓模型 13
2.3.2 燃料電池陽極流道模型 16
2.3.3 燃料電池陰極流道模型 17
2.3.4 薄膜水滲透模型 19
2.4 氫氣當量比 20
第三章 找尋電池衰退原因、重組與改裝 23
3.1 電池為何衰退 23
3.2 實驗電池重組 26
3.2.1 量測燃料電池容積 27
3.3 電池破洞的原因 28
3.4 改裝成閉管式電池的優點 30
第四章 水氣對電池的影響,降低影響與實驗設計 32
4.1 水對電池的影響 32
4.2 水對實驗電池的影響 34
4.3 壓差與流速的理論關係 36
4.4 控制訊號與控制方法的確定 37
4.5 工作週期與 λ H2的決定 38
第五章 實驗設備、架構與系統識別 41
5.1 實驗設備與架構介紹 41
5.1.1 實驗設備 42
5.2 系統模型的建立 45
5.2.1 理論分析 45
5.2.2 模型驗證 47
5.3 系統識別 49
5.3.1 PRBS 訊號 49
5.3.2 流量感測器的頻寬量測 50
5.3.3 PWM 周期與 DAQ 取樣時間的決定 51
5.4 流量訊號轉換為輸出導通比 54
5.5 不同電流負載下的流量變化 56
5.6 輸入導通比-輸出導通比的系統識別 57
5.6.1 識別模型的抉擇 57
5.6.2 曲線擬合(Curve Fitting) 58
5.6.3 殘差模數與判定係數的介紹 58
5.6.4 實驗結果 60
5.7 實驗結論 61
第六章 控制器設計與實驗 62
6.1 輸入與輸出的選擇 62
6.2 控制方式 62
6.3 電子負載器與流量器的匹配 65
6.4 實驗結果與討論 66
6.4.1 負載變動與控制 λ H2值之實驗 66
6.4.2 負載變動與壓力測試之實驗 69
6.5 總結 70
第七章 結論與未來展望 71
7.1 結論 71
7.2 未來展望 72
參考文獻 73
參考文獻 References
[1] 馬承九, 燃料電池札記. 新世紀科技叢書, 三民, 2008.
[2] W. C. F. B. P. Ryan O’Hayre, Suk-Won Cha, Fuel Cell Fundamentals. Wiley, 2009.
[3] M. Ceraolo, C. Miulli, and A. Pozio, “Modelling static and dynamic behaviour
of proton exchange membrane fuel cells on the basis of electro-chemical descrip-
tion,” Journal of Power Sources, vol. 113, no. 1, pp. 131 – 144, 2003.
[4] R. Mann, J. Amphlett, M. Hooper, H. Jensen, B. Peppley, and P. Roberge, “De-
velopment and application of a generalised steady-state electrochemical model
for a pem fuel cell,” Journal of Power Sources, vol. 86, no. 1, pp. 173–180, 2000.
[5] S. Yerramalla, A. Davari, A. Feliachi, and T. Biswas, “Modeling and simulation
of the dynamic behavior of a polymer electrolyte membrane fuel cell,” Journal
of Power Sources, vol. 124, no. 1, pp. 104–113, 2003.
[6] J. Amphlett, R. Mann, B. Peppley, P. Roberge, and A. Rodrigues, “A model
predicting transient responses of proton exchange membrane fuel cells,” Journal
of Power Sources, vol. 61, no. 1 2, pp. 183 – 188, 1996.
[7] K. Keesman, System Identification: An Introduction. Springer, 2011.
[8] F. Jurado, “Nonlinear model identification of fuel cell power plant,” in
AFRICON, 2004. 7th AFRICON Conference in Africa, vol. 2, pp. 769 – 774
Vol.2, sept. 2004.
[9] F.-C. Wang, Y.-P. Yang, C.-W. Huang, H.-P. Chang, and H.-T. Chen, “System
identification and robust control of a portable proton exchange membrane full-
cell system,” Journal of Power Sources, vol. 164, no. 2, pp. 704 – 712, 2007.
[10] F.-C. Wang, H.-T. Chen, Y.-P. Yang, and J.-Y. Yen, “Multivariable robust
control of a proton exchange membrane fuel cell system,” Journal of Power
Sources, vol. 177, no. 2, pp. 393 – 403, 2008.
[11] F. Wang, H. Chen, Y. Yang, H. Chang, and J. Yen, “Multivariable system iden-
tification and robust control of a proton exchange membrane fuel cell system,”
in Decision and Control, 2007 46th IEEE Conference on, pp. 6118–6123, IEEE,
2007.
[12] C. Wang, M. Nehrir, and S. Shaw, “Dynamic models and model validation for
pem fuel cells using electrical circuits,” Energy Conversion, IEEE Transactions
on, vol. 20, pp. 442 – 451, june 2005.
[13] J. Jia, Y. Wang, Q. Li, Y. Cham, and M. Han, “Modeling and dynamic charac-
teristic simulation of a proton exchange membrane fuel cell,” Energy Conver-
sion, IEEE Transactions on, vol. 24, pp. 283 –291, march 2009.
[14] 蔡武田, "質子交換膜電池之非線性電路分析與控制", 國立中興大學電機工程學系碩士論文, 民國九十三年.
[15] A. G. S. J. T. Pukrushpan and H. Peng, Control of Fuel Cell Power Systems.
Springer, 2004.
[16] J. Pukrushpan, A. Stefanopoulou, and H. Peng, “Control of fuel cell breathing,”
Control Systems, IEEE, vol. 24, pp. 30 – 46, apr 2004.
[17] J. Pukrushpan, A. Stefanopoulou, and H. Peng, “Modeling and control for pem
fuel cell stack system,” in American Control Conference, 2002. Proceedings of
the 2002, vol. 4, pp. 3117 – 3122 vol.4, 2002.
[18] J. Gruber, C. Bordons, and F. Dorado, “Nonlinear control of the air feed of a
fuel cell,” in American Control Conference, 2008, pp. 1121 –1126, june 2008.
[19] M. A. Danzer, S. J. Wittmann, and E. P. Hofer, “Prevention of fuel cell starva-
tion by model predictive control of pressure, excess ratio, and current,” Journal
of Power Sources, vol. 190, no. 1, pp. 86 – 91, 2009.
[20] W. K. Na and B. Gou, “Feedback-linearization-based nonlinear control for pem
fuel cells,” Energy Conversion, IEEE Transactions on, vol. 23, pp. 179 –190,
march 2008.
[21] S. Rodatz, G. Paganelli, and L. Guzzella, “Optimizing air supply control of a
pem fuel cell system,” in American Control Conference, 2003. Proceedings of
the 2003, vol. 3, pp. 2043 – 2048 vol.3, june 2003.
[22] A. Vahidi, A. Stefanopoulou, and H. Peng, “Model predictive control for starva-
tion prevention in a hybrid fuel cell system,” in American Control Conference,
2004. Proceedings of the 2004, vol. 1, pp. 834 –839 vol.1, 30 2004-july 2 2004.
[23] C. Bordons, A. Arce, and A. del Real, “Constrained predictive control strategies
for pem fuel cells,” in American Control Conference, 2006, p. 6 pp., june 2006.
[24] C. Panos, K. Kouramas, M. Georgiadis, N. Brandon, and E. Pistikopoulos,
“Modelling and explicit mpc of pem fuel cell systems,” Computer Aided Chem-
ical Engineering, vol. 28, pp. 517–522, 2010.
[25] W. Garcia-Gabin, F. Dorado, and C. Bordons, “Real-time implementation of
a sliding mode controller for air supply on a pem fuel cell,” Journal of Process
Control, vol. 20, no. 3, pp. 325 – 336, 2010.
[26] R. Talj, D. Hissel, R. Ortega, M. Becherif, and M. Hilairet, “Experimental val-
idation of a pem fuel-cell reduced-order model and a moto-compressor higher
order sliding-mode control,” Industrial Electronics, IEEE Transactions on,
vol. 57, pp. 1906 –1913, june 2010.
[27] S. Chen, Y. Wu, H. Sun, and Z. Sun, “Simulation of pressure effect on oxygen
in the cathode for the pem fuel cell,” in Information Science and Engineering
(ICISE), 2010 2nd International Conference on, pp. 1503 –1506, dec. 2010.
[28] N. Hassanaly, K. Agbossou, Y. Dube, and K. Adzakpa, “Air supply state model
for a proton exchange membrane fuel cell control,” in Electrical and Computer
Engineering, 2007. CCECE 2007. Canadian Conference on, pp. 1511 –1514,
april 2007.
[29] J.-H. Kim, J.-M. Seo, I. S. Jung, and N. keon Hur, “A study on the improvement
of fan module for air management system of portable fuel cell,” in Mechanical
and Electronics Engineering (ICMEE), 2010 2nd International Conference on,
vol. 2, pp. V2–249 –V2–252, aug. 2010.
[30] T. Kim and W. Choi, “Control system design for the small proton exchange
membrane fuel cell stack,” in Telecommunications Energy Conference, 2009.
INTELEC 2009. 31st International, pp. 1–6, IEEE, 2009.
[31] T.-H. Kim, S.-H. Kim, W. Kim, J.-H. Lee, and W. Choi, “Development of the
novel control algorithm for the small proton exchange membrane fuel cell stack
without external humidification,” in Applied Power Electronics Conference and
Exposition (APEC), 2010 Twenty-Fifth Annual IEEE, pp. 2166 –2173, feb.
2010.
[32] G. Janssen and M. Overvelde, “Water transport in the proton-exchange-
membrane fuel cell: measurements of the effective drag coefficient,” Journal
of Power Sources, vol. 101, no. 1, pp. 117–125, 2001.
[33] P. Thounthong and P. Sethakul, “Analysis of a fuel starvation phenomenon of
a pem fuel cell,” in Power Conversion Conference - Nagoya, 2007. PCC ’07,
pp. 731 –738, april 2007.
[34] J. Kang, D. W. Jung, S. Park, J.-H. Lee, J. Ko, and J. Kim, “Accelerated
test analysis of reversal potential caused by fuel starvation during pemfcs op-
eration,” International Journal of Hydrogen Energy, vol. 35, no. 8, pp. 3727 –
3735, 2010.
[35] A. Taniguchi, T. Akita, K. Yasuda, and Y. Miyazaki, “Analysis of electro-
catalyst degradation in pemfc caused by cell reversal during fuel starvation,”
Journal of Power Sources, vol. 130, no. 1 2, pp. 42 – 49, 2004.
[36] T. Allag and T. Das, “Robust nonlinear control of fuel cell ultra-capacitor
hybrid system,” in American Control Conference (ACC), 2010, pp. 6923–6929,
IEEE, 2010.
[37] C. H. Woo and J. Benziger, “Pem fuel cell current regulation by fuel feed
control,” Chemical Engineering Science, vol. 62, no. 4, pp. 957 – 968, 2007.
[38] 戴良宇, "應用廣義預測控制法則設計燃料電池之氫氣供應系統", 國立中山大學電機學系碩士論文, 民國100年.
[39] 薛志洪, "應用強韌pid控制法則設計燃料電池之氫氣供應系統", 國立中山大學電機學系碩士論文, 民國100年.
[40] S. Kim and I. Hong, “Effects of humidity and temperature on a proton ex-
change membrane fuel cell (pemfc) stack,” Journal of Industrial and Engineer-
ing Chemistry, vol. 14, no. 3, pp. 357 – 364, 2008.
[41] K. Minard, V. Viswanathan, P. Majors, L. Wang, and P. Rieke, “Magnetic
resonance imaging (mri) of pem dehydration and gas manifold flooding dur-
ing continuous fuel cell operation,” Journal of power sources, vol. 161, no. 2,
pp. 856–863, 2006.
[42] H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang,
H. Wang, Z. Liu, R. Abouatallah, and A. Mazza, “A review of water flooding
issues in the proton exchange membrane fuel cell,” Journal of Power Sources,
vol. 178, no. 1, pp. 103 – 117, 2008.
[43] R. Anderson, M. Blanco, X. Bi, and D. P. Wilkinson, “Anode water removal
and cathode gas diffusion layer flooding in a proton exchange membrane fuel
cell,” International Journal of Hydrogen Energy, vol. 37, no. 21, pp. 16093
– 16103, 2012. <ce:title>Advances in Hydrogen Production (Selected papers
from ICH2P-2011)</ce:title>.
[44] S. D. Greenway, E. B. Fox, and A. A. Ekechukwu, “Proton exchange membrane
(pem) electrolyzer operation under anode liquid and cathode vapor feed config-
urations,” International Journal of Hydrogen Energy, vol. 34, no. 16, pp. 6603
– 6608, 2009.
[45] J. Chen, T. Matsuura, and M. Hori, “Novel gas diffusion layer with water
management function for pemfc,” Journal of Power Sources, vol. 131, no. 1 2,
pp. 155 – 161, 2004.
[46] W. Yan, H. Chu, J. Chen, C. Soong, and F. Chen, “Transient analysis of water
transport in pem fuel cells,” Journal of power sources, vol. 162, no. 2, pp. 1147–
1156, 2006.
[47] U. Pasaogullari and C.-Y. Wang, “Two-phase transport and the role of micro-
porous layer in polymer electrolyte fuel cells,” Electrochimica Acta, vol. 49,
no. 25, pp. 4359 – 4369, 2004.
[48] B. McCain, A. Stefanopoulou, and I. Kolmanovsky, “A multi-component
spatially-distributed model of two-phase flow for estimation and control of fuel
cell water dynamics,” in Decision and Control, 2007 46th IEEE Conference on,
pp. 584 –589, dec. 2007.
[49] B. Dokkar, N. E. Settou, O. Imine, N. Saifi, B. Negrou, and Z. Nemouchi,
“Simulation of species transport and water management in pem fuel cells,”
International Journal of Hydrogen Energy, vol. 36, no. 6, pp. 4220 – 4227,
2011.
[50] J. Correa, F. Farret, and L. Canha, “An analysis of the dynamic performance
of proton exchange membrane fuel cells using an electrochemical model,” in
Industrial Electronics Society, 2001. IECON ’01. The 27th Annual Conference
of the IEEE, vol. 1, pp. 141 –146 vol.1, 2001.
[51] F. Chen, H.-S. Chu, C.-Y. Soong, and W.-M. Yan, “Effective schemes to control
the dynamic behavior of the water transport in the membrane of pem fuel cell,”
Journal of Power Sources, vol. 140, no. 2, pp. 243 – 249, 2005.
[52] B. McCain, A. Stefanopoulou, and I. Kolmanovsky, “Stability analysis for liquid
water accumulation in low temperature fuel cells,” in Decision and Control,
2008. CDC 2008. 47th IEEE Conference on, pp. 859 –864, dec. 2008.
[53] B. McCain, J. Siegel, and A. Stefanopoulou, “Stack-level validation of a semi-
analytic channel-to-channel fuel cell model for two-phase water distribution
boundary value control,” in American Control Conference, 2008, pp. 5098 –
5103, june 2008.
[54] F. Zhang, X. Yang, and C. Wang, “Liquid water removal from a polymer
electrolyte fuel cell,” Journal of The Electrochemical Society, vol. 153, no. 2,
pp. A225–A232, 2006.
[55] J. Hui and H. Jie, “Research of the humidity control system of pem fuel,”
in Intelligent Systems and Knowledge Engineering (ISKE), 2010 International
Conference on, pp. 548–551, IEEE, 2010.
[56] A. Karnik, J. Sun, A. Stefanopoulou, and J. Buckland, “Humidity and pressure
regulation in a pem fuel cell using a gain-scheduled static feedback controller,”
Control Systems Technology, IEEE Transactions on, vol. 17, pp. 283 –297,
march 2009.
[57] 韓曾進, 適應控制系統. 科技圖書股份有限公司, 1992.
[58] S. W. Smith et al., “The scientist and engineer’s guide to digital signal process-
ing,” 1997.
[59] J. R. Shewchuk, “An introduction to the conjugate gradient method without
the agonizing pain,” 1994.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code