Responsive image
博碩士論文 etd-0619116-115854 詳細資訊
Title page for etd-0619116-115854
論文名稱
Title
熱處理溫度與時間對多相中錳鋼冷軋板之組織與拉伸性質之影響
Effect of annealing temperature and time on microstructure and tensile properties of a cold-rolled multi-phase medium Mn steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
195
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-27
繳交日期
Date of Submission
2016-08-03
關鍵字
Keywords
拉伸性質、先進高強度鋼、退火時間、退火溫度、冷軋
Annealing time, Annealing temperature, Cold rolling, Tensile property, AHSS
統計
Statistics
本論文已被瀏覽 5716 次,被下載 0
The thesis/dissertation has been browsed 5716 times, has been downloaded 0 times.
中文摘要
本實驗研究中錳鋼,經冷軋退火程序,探討在不同退火時間與溫度下對於顯微組織及拉伸特性的影響。另外也探討在不同冷軋下,相同退火條件對於鋼材特性是否有影響。實驗發現在25%及50%的冷軋量下,750oC退火10分鐘有約60%最高的延伸率及60 GPa%強延積。不同冷軋量對於相同退火條件沒有明顯的差異。實驗也發現在750oC下退火時間增加,晶粒會成長並傾向等軸發展,合金分佈則有均質化的現象,且當時間達10小時降溫後沃斯田鐵晶粒中會有大量的athermal-麻田散鐵生成。當退火溫度由700oC增加至750oC時間為10分鐘時,沃斯田鐵的相分率會提高,對晶粒大小並沒有明顯影響,沃斯田鐵中的錳濃度會下降,因此降低其穩定性。
Abstract
This study explores the effect of cold rolling and intercritical annealing on the microstructure and tensile properties of a medium manganese steel. The effects of annealing time and temperature of intercritical annealing have been studied. It was found that cold rolling followed by 750oC annealing for 10 minutes gave the best tensile properties. 25% and 50% cold roll reduction gave similar tensile properties. When the annealing temperature was increased from 700 to 750oC, more equiaxed grains were formed, and the alloy distribution was homogenized. When the annealing time was increased to 10 hours at 750oC, a lot of athermal martensites were formed. Increasing annealing temperature can give higher fraction of austenite, but the manganese content of austenite grains was decreased, so that caused the decrease of austenite stability.
目次 Table of Contents
論文審定書 i
中文摘要 ii
英文摘要 iii
圖目錄 viii
表目錄 xx
一、前言 1
二、文獻回顧 2
2-1 TRIP鋼 2
2-2 麻田散鐵 2
2-2-1 麻田散鐵的形成方式 2
2-2-2 麻田散鐵的特徵 3
2-2-3 麻田散鐵的誘發形式 4
2-2-4 麻田散鐵的成核 5
2-3 晶粒尺寸的影響 6
2-3-1 細晶材料的強化 6
2-3-2晶粒尺寸對降伏強度的影響 7
2-3-3 晶粒尺寸對於晶界強化的影響 7
2-3-4 晶粒尺寸對Lu ̈ders應變的影響 8
2-3-5 晶粒尺寸對面積縮減率的影響 9
2-3-6 晶粒尺寸對於沃斯田鐵穩定性的影響 9
2-3-7 晶粒尺寸對於拉伸行為的影響 9
2-4 冷加工的影響 10
2-4-1 冷軋退火過程產生奈米晶結構 10
2-4-2 冷加工對於退火後鋼材沃斯田鐵生成速率的影響 10
2-4-3 冷加工對於沃斯田鐵形貌與分佈的影響 10
2-4-4 冷加工量對於誘發麻田散鐵形貌的影響 11
2-4-5 冷加工量對於二次退火後顯微組織的影響 11
2-4-6 冷加工量對於二次退火後相分率的影響 12
2-4-7 冷加工量對於二次退火後相成分的影響 12
2-4-8 冷加工量對於二次退火後拉伸特性的影響 13
2-5 逆變態沃斯田鐵(ART) 13
2-5-1逆變態與高強度-高延展性鋼 13
2-5-2 逆變態的強化機制 15
2-5-3 冷軋量與退火溫度對於逆變態的影響 15
2-6 退火條件的影響 15
2-6-1 退火溫度的影響 15
2-6-2 退火溫度對於沃斯田鐵成分的影響 16
2-6-3 退火溫度對於晶粒大小的影響 17
2-6-4 退火溫度對Ms溫度的影響 17
2-6-5 退火溫度對於相分率的影響 17
2-6-6 退火溫度對於SFE的影響 18
2-6-7 退火溫度對於機械特性的影響 18
2-6-8 退火時間對晶粒尺寸的影響 19
2-6-9 退火時間對於沃斯田鐵穩定性的影響 20
2-6-10 退火時間對於機械特性的影響 20
2-7 中錳鋼的發展 21
三、研究目的 25
四、實驗方法 26
4-1 實驗材料 26
4-2 實驗步驟 26
4-3 拉伸試驗 26
4-4 顯微組織分析 27
五、實驗結果 29
5-1 熱軋後第一階段高溫熱處理之顯微組織 30
5-2 冷軋後顯微組織 30
5-3 冷軋量25%,相同熱處理溫度750oC,不同熱處理時間(A組) 30
5-3-1 機械特性 30
5-3-2 顯微組織 31
5-3-3 相分率分析 32
5-3-4 元素分析 33
5-3-5 晶粒大小與長寬比 33
5-4 冷軋量50%,相同熱處理溫度750oC,不同熱處理時間(B組) 34
5-4-1 機械特性 34
5-4-2 顯微組織 34
5-4-3 相分率分析 35
5-4-4 元素分析 36
5-4-5 晶粒大小與長寬比 37
5-5 冷軋量25%,不同熱處理溫度,相同熱處理時間10 min(C組) 37
5-5-1 機械特性 37
5-5-2 顯微組織 38
5-5-3 相分率分析 38
5-5-4 元素分析 39
5-5-5 晶粒大小與長寬比 40
5-6 冷軋量25%,750 oC退火5 min其特定應變量組織演化行為(D組) 40
5-6-1 機械特性 40
5-6-2 顯微組織 40
5-6-3 相分率分析 41
5-6-4 元素分析 42
5-6-5 晶粒大小與長寬比 42
六、討論 43
6-1 退火時間的影響 43
退火時間對於相分率的影響 43
退火時間對於顯微組織的影響 44
退火時間對於元素分佈的影響 44
退火時間對於晶粒大小與長寬比的影響 45
退火時間對於拉伸性質的影響 46
6-2 退火溫度的影響 47
退火溫度對於相分率的影響 47
退火溫度對於顯微組織的影響 48
退火溫度對於元素分佈的影響 48
退火溫度對於晶粒大小與長寬比的影響 49
退火溫度對於拉伸性質的影響 49
6-3 拉伸時的組織演化行為 50
七、結論 51
1. 退火時間的影響 51
2. 退火溫度的影響 52
3. 變形組織演化行為 52
八、參考文獻 53
參考文獻 References
[1] B. C. De Cooman, Structure–properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science, 2004. 8: 285-303
[2] P. J. Jacques, Transformation-induced plasticity for high strength formable steels. Current Opinion in Solid State and Materials Science, 2004. 8: 259-265
[3] T. N. Lomholt, Y. Adachi, A. Bastos, K. Pantleon and M. A. J. Somers, Partial transformation of austenite in Al–Mn–Si TRIP steel upon tensile straining: anin situEBSD study. Materials Science and Technology, 2013. 29: 1383-1388
[4] G. Krauss, Martensite in steel: strength and structure. Materials Science and Engineering: A, 1999. 40-57
[5] G. Krauss and A. R. Marder, The morphology of martensite in iron alloys. Matallurgical Transactions, 1971. 2: 2343-2357
[6] S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys. Acta Materialia, 2003. 51: 1789-1799
[7] H. Kitahara, R. Ueji, N. Tsuji and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel. Acta Materialia, 2006. 54: 1279-1288
[8] D. Fahr, Stress-and strain-induced formation of martensite and its effects on strength and ductility of metastable austenitic stainless steels. Matallurgical Transactions, 1970. 2: 1971-1883
[9] P. C. Maxwell, A. Goldberg and J. C. Shyne, Stress-assisted and strain-induced martensites in Fe-Ni-C alloys. Metallurgical transactions, 1974. 5: 1305-1318
[10] J. Talonen and H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Materialia, 2007. 55: 6108-6118
[11] 吳季凌,中錳鋼變形早期變形誘發麻田散鐵之組織研究,中山大學 材光所 碩士論文(2015)
[12] W. B. Morrison, The effect of grain size on the stress-strain relationship in low-carbon steel. American Society for Metals, 1966. 59: 824-845
[13] R. L. Miller, Ultrafine-grained microstructures and mechanical properties of alloy steels. Matallurgical Transactions, 1972. 3: 905-912
[14] Y. Ma, J. Jin and Y. Lee, A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scripta Materialia, 2005. 52: 1311-1315
[15] R. D. K. Misra, J. S. Shah, S. Mali, P. K. C. Venkata Surya, M. C. Somani and L. P. Karjalainen, Phase reversion induced nanograined austenitic stainless steels: microstructure, reversion and deformation mechanisms. Materials Science and Technology, 2013. 29: 1185-1192
[16] 施翌帆,,,多重軋延退火程序對經沃斯田鐵逆變態所得雙相細晶錳鋼之組織與拉伸性質的影響,中山大學, 材光所 碩士論文(,2015)
[17] F. J. Humphreys, P. B. Prangnell, J. R. Bowen, A. Gholinia and C. Harris, Developing stable fine-grain microstructures by large strain deformation. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 1999. 357: 1663
[18] C. Pithan, T. Hashimoto, M. Kawazoe, J. Nagahora and K. Higashi, Microstructure and texture evolution in ECAE processed A5056. Materials Science and Engineering: A, 2000. 280: 62-68
[19] N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa∗∗, Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scripta Materialia, 1999. 40: 795-800
[20] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Materialia, 1999. 47: 579-583
[21] A. L. M. Costa, A. C. C. Reis, L. Kestens and M. S. Andrade, Ultra grain refinement and hardening of IF-steel during accumulative roll-bonding. Materials Science and Engineering: A, 2005. 406: 279-285
[22] T. J. Webstera, R. W. Siegelb and R. Bizios, Osteoblast adhesion on nanophase ceramics. Biomaterials, 1999. 20: 1221-1227
[23] A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baró, J. A. Szpunar and T. G. Langdon, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Materialia, 2003. 51: 753-765
[24] Y. Ivanisenko, W. Lojkowski, R. Z. Valiev and H. J. Fecht, The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion. Acta Materialia, 2003. 51: 5555-5570
[25] A. Belyakov, T. Sakai, H. Miura and R. Kaibyshev, Substructures and internal stresses developed under warm severe deformation of austenitic stainless steel. Scripta Materialia, 2000. 42: 319-325
[26] H. Lianxi, L. Yuping, W. Erde and Y. Yang, Ultrafine grained structure and mechanical properties of a LY12 Al alloy prepared by repetitive upsetting-extrusion. Materials Science and Engineering: A, 2006. 422: 327-332
[27] R. D. K. Misra, S. Nayak, S. A. Mali, J. S. Shah, M. C. Somani and L. P. Karjalainen, Microstructure and deformation behavior of phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel. Metallurgical and Materials Transactions A, 2009. 40: 2498-2509
[28] G. Krauss, Fine structure of austenite produced by the reverse martensitic transformation. Acta Metallurgica, 1963. 11: 499-509
[29] E. De Moor, D. K. Matlock, J. G. Speer and M. J. Merwin, Austenite stabilization through manganese enrichment. Scripta Materialia, 2011. 64: 185-188
[30] S. Lee, S. J. Lee and B. C. De Cooman, On the selection of the optimal intercritical annealing temperature for medium mn TRIP steel. Metallurgical and Materials Transactions A, 2013. 44: 5018-5024
[31] Z. H. Cai, H. Ding, R. D. K. Misra and Z. Y. Ying, Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Materialia, 2015. 84: 229-236
[32] S. Lee and B. C. De Cooman, Effect of the intercritical annealing temperature on the mechanical properties of 10 pct Mn multi-phase steel. Metallurgical and Materials Transactions A, 2014. 45: 5009-5016
[33] S. Lee and B. C. De Cooman, Annealing temperature dependence of the tensile behavior of 10 pct Mn multi-phase twip-trip steel. Metallurgical and Materials Transactions A, 2014. 45: 6039-6052
[34] S. Lee, S. J. Lee and B. C. De Cooman, Tensile behavior of intercritically annealed 10 pct Mn multi-phase steel. Metallurgical and Materials Transactions A, 2013. 45: 709-716
[35] Q. Han, Y. Zhang and L. Wang, Effect of annealing time on microstructural evolution and deformation characteristics in 10Mn-1.5Al TRIP steel. Metallurgical and Materials Transactions A, 2015. 46: 1917-1926
[36] J. Maki, J. Mahieu, B. C. De Cooman and S. Claessens, Galvanisability of silicon free CMnAl TRIP steels. Materials science and technology, 2003. 19: 125-131
[37] H. Luo, J. Shi, C. Wang, W. Cao, X. Sun and H. Dong, Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel. Acta Materialia, 2011. 59: 4002-4014
[38] M. J. Merwin, Low-carbon manganese TRIP steels. Materials Science Forum, 2007. 539-543: 4327-4332
[39] J. Shi, X. Sun, M. Wang, W. Hui, H. Dong and W. Cao, Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scripta Materialia, 2010. 63: 815-818
[40] D. W. Suh, S. J. Park, C. S. Oh and S. J. Kim, Influence of partial replacement of Si by Al on the change of phase fraction during heat treatment of TRIP steels. Scripta Materialia, 2007. 57: 1097-1100
[41] D. W. Suh, S. J. Park, T. H. Lee, C. S. Oh and S. J. Kim, Physical metallurgy and materials science. Metallurgical and Materials Transactions A, 2010. 41: 397-408
[42] Z. Cai, H. Ding, Z. Ying and R. D. K. Misra, Microstructural evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel. Journal of Materials Engineering and Performance, 2014. 23: 1131-1137
[43] S. J. Park, B. Hwang, K. H. Lee, T. H. Lee, D. W. Suh and H. N. Han, Microstructure and tensile behavior of duplex low-density steel containing 5 mass% aluminum. Scripta Materialia, 2013. 68: 365-369
[44] S. Lee, S. J. Lee and B. C. De Cooman, Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning. Scripta Materialia, 2011. 65: 225-228
[45] Z. C. Li, H. Ding and Z. H. Cai, Mechanical properties and austenite stability in hot-rolled 0.2C–1.6/3.2Al–6Mn–Fe TRIP steel. Materials Science and Engineering: A, 2015. 639: 559-566
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.142.128
論文開放下載的時間是 校外不公開

Your IP address is 18.117.142.128
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code