Responsive image
博碩士論文 etd-0619116-123815 詳細資訊
Title page for etd-0619116-123815
論文名稱
Title
薄膜之拉伸與疲勞作用之探討
The Tensile and Fatigue Tests of Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-28
繳交日期
Date of Submission
2016-07-20
關鍵字
Keywords
聚乙烯、聚對苯二甲酸乙二酯、皺褶、薄膜、疲勞曲線
PE, PET, Wrinkles, Fatigue, Thin films
統計
Statistics
本論文已被瀏覽 5644 次,被下載 1756
The thesis/dissertation has been browsed 5644 times, has been downloaded 1756 times.
中文摘要
本文旨在探討不同薄膜材料於室溫下之皺褶現象與疲勞特性。透過拉伸試驗獲得矩形薄膜之拉伸數據,繪製出不同材質與厚度的應力應變曲線,同時觀察拉伸試驗的過程,分析皺摺生長的機制與特性;疲勞試驗採用應變控制型式,經試驗可得薄膜之疲勞數據,再將此數據繪製成疲勞壽命圖,藉此可分析PE薄膜之疲勞特性。

本試驗使用MTS Model42微拉伸試驗機,針對聚乙烯與聚對苯二甲酸乙二酯薄膜進行拉伸試驗,使用50 N的負載計,應變速率為0.000520 s-1,試驗過程中同時利用攝影機進行紀錄。由於薄膜特性軟容易受損,因此設計矩形固定框架用以固定與減少碰撞。將拉伸試驗數據做為標準,針對聚乙烯薄膜進行低週期疲勞試驗,設定頻率0.3 Hz,應變比為0.1,藉此可獲得聚乙烯薄膜之疲勞特性。

分析試驗結果得知,薄膜材料其皺褶變化具有規律性,在彈性區域內,可將皺褶變化過程劃分為兩階段:一、面內變形階段,二、面外變形階段,此二階段可解釋皺摺於彈性區內的生長機制與特性,將試驗數據與影像對照可得每一條皺褶生成時,所對應的負載大小,藉此可預測皺褶之數量並可透過改變試片之厚度、形狀,抑制皺褶的生成。聚乙烯試片製成薄膜型態,其疲勞特性與金屬材料相似,可區分為彈性與塑性區,藉由彈性與塑性曲線,繪製成完整之疲勞壽命曲線,對聚乙烯薄膜材料的應用與分析,提供壽命預測的模型。
Abstract
This thesis aims to investigate the phenomenon of wrinkles and fatigue behavior of thin films with different materials at room temperature. We plotted the stress and strain diagrams of different materials and thicknesses by the tensile tests. We also observed the tensile testing process and analyzed the mechanisms of wrinkles. In order to understand the fatigue failure mechanisms and the influence factors, the uniaxial tension-tension low cycle fatigue (LCF) tests under strain control are necessarily needed. After the cyclic tests, we received the results of fatigue properties and life.

Polyethylene (PE) and polyethylene terephthalate (PET) thin films were both used in tensile tests. They were in rectangular shape, bonded on the cardboard frame, and clipped in an MTS Model42 micro-tensile system. In tensile tests, we chose the 50N load cell, and adopted 0.000520 s-1 strain rate. During the process of tensile tests, we used the high speed camera to record the wrinkling evolution. From tensile tests, we obtained the mechanical properties of thin films and mechanisms as the base-line data. In fatigue tests, we adopted strain controlled mode of sinusoidal wave with strain ratio R = 0.1 at frequency 0.3 Hz for PE thin films only.

The results show that the wrinkling evolution trend of different thin films is almost the same. The evolution of wrinkles can be divided into two stages: 1. in-plane deformation phase. 2. out-of-plane deformation. These stages can be used to describe the mechanisms of wrinkle growth from elastic to plasitc zone. The fatigue behaviors of PE thin films are similar to aluminum foils. From the fatigue tests, we obtained the strain and life diagram which composed of two straight line of elastic part and plastic part. According to the fatigue data, we can construct the life prediction curve.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 ix
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
1-3 薄膜的皺褶現象 2
1-4 研究方向 3
1-5 文獻回顧 4
第二章 試驗方法 8
2-1 薄膜材料 8
2-2 儀器設備 9
2-3 試驗簡述 10
2-4 試片的準備與製作 10
2-5 拉伸試驗與疲勞試驗 11
2-5-1 常溫拉伸試驗 11
2-5-2 常溫疲勞試驗 11
2-5-3 實驗儀器設置 12
2-5-4 薄膜固定框架設計 12
2-5-5 疲勞實驗步驟 13
第三章 拉伸試驗結果 22
3-1 常溫拉伸試驗結果 22
3-2 薄膜皺褶測量結果 23
第四章 疲勞試驗結果 34
4-1 常溫疲勞試驗結果 34
第五章 討論 40
5-1 薄膜皺褶的產生及演化 40
5-1-1 PE薄膜之皺褶現象 40
5-1-2 PET (S10)系列薄膜之皺褶現象 40
5-1-3 PE與PET(S10)薄膜皺褶的生長現象 41
5-1-4 薄膜皺褶生長機制 42
5-1-5 皺褶生長因素 43
5-2 疲勞作用對PE薄膜之影響 44
5-2-1 PE薄膜之疲勞現象 44
5-2-2 PE薄膜之疲勞機制 44
5-2-3 PE薄膜疲勞試驗問題探討 45
第六章 結論 50
參考文獻 51
附錄一 Crosshead速率對照表(0.3Hz) 55
附錄二 PET(S10)薄膜皺褶臨界負載圖 56
附錄三 疲勞參數計算方法 58
參考文獻 References
1. Lake, M. S., Peterson, L. D. and Levine, M. B., “Rationale for defining structural requirements for large space telescopes,” Journal of Spacecraft and Rockets, Vol.39, pp. 674~681, 2002.
2. Ding, H. and Yang, B., “The modeling and numerical analysis of wrinkled membranes,” International Journal for Numerical Methods in Engineering, Vol.58, pp. 1785~1801, 2003.
3. Wagner, H. “Flat sheet metal girder with very thin metal web. Part: I,” Zeitschrift fur Flugtechnik und Motorluftschiffahrt, Vol. 20, pp.200~207, 1929.
4. Mansfield, E. H. ”Load transfer via a wrinkled membrane,” Proceedings of the Royal Society of London Part A, Vol.316, pp. 269~289, 1970.
5. Wu C. H., “Nonlinear wrinkling of nonlinear membranes of revolution,” ASME Journal of Applied Mechanics, Vol.45, pp. 533~538, 1978.
6. Roddeman, D. G., Drukker, J., Oomens, C. W. J., and Janssen, J. D., “The wrinkling of thin membranes: Part I-Theory,” ASME Journal of Applied Mechanics, Vol.54, pp. 884~887, 1987.
7. Roddeman, D. G., Drukker, J., Oomens, C. W. J., and Janssen, J. D., “The wrinkling of thin membranes: Part II-Numerical Analysis,” ASME Journal of Applied Mechanics, Vol.54, pp. 888~892, 1987.
8. Freeland, R. E., Bilyeu, G. D., Veal, G. R., Steiner, M. D. and Carson, D. E., “Large inflatable deployable antenna flight experiment results,” Acta Astronautica, Vol.41, iss.4-10, pp. 267~277, 1997.
9. Murphy, D. M. and Murphey, T. W., “Scalable solar sail subsystem design considerations,” In: 43rd Structures, Structural Dynamics and Materials Conference, AIAA 2002-1703, pp. 1~14, 2002.
10. Kukathasan, S. and Pellegrino, S., “Nonlinear vibration of wrinkled membranes,” In: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2003-1747, pp. 1~11, 2003.
11. Lecieux, Y. and Bouzidi, R., “Experimental analysis on membrane wrinkling under biaxial load – Comparison with bifurcation analysis,” International Journal of Solids and Structures, Vol.47, pp. 2459~2475, 2010.
12. Nayyar, V., Ravi Chandar, K. and Huang, R., “Stretch-induced stress patterns and wrinkles in hyperelastic thin sheets,” International Journal of Solids and Structures, Vol.48, pp. 3471~3483, 2011
13. Wesley Wong and Pellegrino, S., “Wrinkled Membranes Part I: Experiments,” Journal of Mechanics of Materials and Structures, Vol.1, iss.1 pp. 1~23, 2006.
14. Miyamura, T., “Wrinkling on stretched circular membrane under in-plane torsion: Bifurcation analyses and experiments,” Engineering Structures, Vol.23, pp. 1407~1425, 2000.
15. Wang, C. G., Du, X. W., Tan, H. F. and He, X. D., “A new computational method for wrinkling analysis of gossamer space structures,” International Journal of Solids and Structures, Vol.46, pp. 1516~1526, 2009.
16. Dharamsi, U. K., Evanchik, D. M. and Blandino, J. R., “Comparing photogrammetry with a conventional displacement measurement technique on a 0.5m square kapton membrane,” In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA 2002-1258, 2002.
17. Nayyar, V., Ravi Chandar, K. and Huang, R., “Stretch-induced wrinkling of polyethylene thin sheets: experiments and modeling,” International Journal of Solids and Structures, Vol.51, pp. 1847~1858, 2014.
18. Silvestre, N., “Wrinkling of stretched thin sheets : Is restrained Poisson’s effect the sole cause?,” Engineering Structures, Vol.106, pp.195~208, 2016.
19. Hong, S., Weil, R., ”Low cycle fatigue of thin copper foils,” Thin Solid Films, Vol.283, pp. 175~181, 1996.
20. Klein, M., Hadrboletz, A., Weiss, B., Khatibi, B., “The size effect on the stress-strain, fatigue and fracture properties of thin metallic foils,” Materials Science & Engineering:A, Vol. 319-321, pp.924~928, 2001
21. Zhang, G.P., Sun, K.H., Zang, B., Gong, J., Sun, C., Wang, Z.G., “Tensile and fatigue strength of ultrathin copper films,” Materials Science & Engineering:A, Vol. 483-484, pp. 387~390, 2008.
22. Sim, G.D., Lee, Y.S., Lee, Soon-Bok, Vlassak, J.J., “Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films,” Materials Science & Engineering:A, Vol. 575, pp. 86~93, 2013.
23. 黃奕豪,矩形薄膜於拉伸作用下皺褶變形之實驗探討,國立中山大學機械與機電工程學系碩士論文,2014。
24. 陳逸穎,矩形金屬薄膜之疲勞性質探討,國立中山大學機械與機電工程學系碩士論文,2015。
25. Lee, Yung-Li, Pan, J., Hathaway, R., Barkey, M., “Fatigue Testing and Analysis,” Elsevier Butterworth-Heinemann, 2005.
26. 吳盈輝,積層陶瓷電容器高溫高壓之變形與薄膜受拉力皺摺現象分析與探討,國立中山大學機械與機電工程學系博士論文,2013。
27. 蔡履文、徐鍾良、江昀宸、丁逸勳,溫度效應對高強度鈦合金顯微組織、機械性質及氧化行為之影響研究--鈦合金板材及銲件高溫疲勞裂縫成長特性研究,行政院國家科學委員會專題研究計畫,2008。

28. Datla, N. V., Papini, M., Ulicny, J., Carlson, B. and Spelt, J.K., “The effects of test temperature and humidity on the mixed-mode fatigue behavior of a toughened adhesive aluminum joint,” Engineering Fracture Mechanics, Vol.78, pp.1125~1139, 2011.
29. Tsuchiya, Toshiyuki, Atsuko Inoue, and Jiro Sakata, “Tensile testing of insulating thin films; humidity effect on tensile strength of SiO 2 films,” Sensors and Actuators A: Physical, Vol.82, pp.286~290, 2000.
30. Kamiya, Shoji, Ikeda, Yusuke, Gaspar, Joao. and Paul, Oliver, “Effect of humidity and temperature on the fatigue behavior of polysilicon thin film,” Sensors and Actuators A: Physical, Vol.170, pp.187~195, 2011.
31. Baumert, Eva K., Sadeghi-Tohidi, Farzad, Hosseinian, Ehsan and Pierron, Olivier N., “Fatigue-induced thick oxide formation and its role on fatigue crack initiation in Ni thin films at low temperatures,” Acta Materialia, Vol.67, pp. 156~167, 2014.
32. Park, Kyung-Jo, and Kim, Chung-Youb, “Variation of monotonic strain in copper thin films during fatigue testing,” International Journal of Fatigue, Vol.87, pp.418-423, 2016.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code