Responsive image
博碩士論文 etd-0619116-161301 詳細資訊
Title page for etd-0619116-161301
論文名稱
Title
探討三氟甲基數量於磺酸化聚芳香醚高分子及其應用於燃料電池質子交換膜上之影響
Investigation of the number of trifluoromethyl groups on sulfonated poly(arylene ether)s for proton exchange membrane of fuel cell.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-19
繳交日期
Date of Submission
2016-07-21
關鍵字
Keywords
三氟甲基、燃料電池、質子交換膜、無規式共聚、聚芳香醚高分子
fuel cells, proton exchange membrane, poly(arylene ether)s, random, trifluoromethyl
統計
Statistics
本論文已被瀏覽 5706 次,被下載 0
The thesis/dissertation has been browsed 5706 times, has been downloaded 0 times.
中文摘要
本研究主要將不同含氟量多苯環單體與兩種市售單體4,4’-(9-Fluoreny-lidene)diphenol及4,4’-(Hexafluoroiso-propylidene)diphenol進行無規式共聚含氟聚芳香醚高分子並控制高分子的磺酸化程度,經磺酸化而得的各種不同的磺酸化高分子薄膜,其離子交換能力(Ion Exchange Capacity, IEC)介於1.32~2.69mmol/g之間,隨後著重探討三氟甲基官能基對於質子交換膜之影響並評估其作為固態電解質後應用於燃料電池之潛力。
材料分析方面,由凝膠滲透層析儀 (Gel Permeation Chromatography, GPC)量測各系列高分子的分子量介於9.2×104~1.1×105 g/mol,利用核磁共振光譜儀 (Nuclear Magnetic Resonance Spectroscopy, NMR)以及傅立葉紅外線光譜儀 (Fourier Transform infrared spectro scopy, FT-IR)鑑定結構正確無誤。而且所有高分子薄膜都表現出良好的熱穩定性及機械性質,其磺酸化高分子熱裂解溫度均高於210 oC。在室溫、環境濕度條件下,機械特性的抗拉強度最高達48MPa,楊氏系數介於0.41~0.57GPa。隨著含氟量的增加薄膜的尺寸安定性有明顯的提升,在高溫高濕環境下,薄膜能具備高於Nafion 211的質子導電度。透過穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM)觀察發現材料擁有明顯的微相分離型態,將sG2系列磺酸化高分子量測元件效率,最大功率密度可達269mW/cm2。
Abstract
A series of sterically-encumbered, sulfonated, fluorine-containing poly(arylene ether) random copolymers were synthesized so as to compare the effects of incorporating trifluoromethyl groups on the proton conductivity and performance of fuel cells of membranes prepared. The polymers were prepared by polymerization of 4,4’-(9-Fluorenylidene)diphenol and 4,4’-(Hexafluoroiso-propylidene)diphenol with two novel monomers, 4,4’’’’-Difluoro-3,3’’’’-bistrifluoromethyl-2’’, 3’’, 5’’, 6’’-tetraphenyl-[1,1’; 4’,1’’;4’’,1’’’; 4’’’,1’’’’]-pentaphenyl and 4,4’’’’-difluoro-3,3’’’’-bis(trifluoromethyl)-2’’,3’’,5’’,6’’,4,4’’’’-difluoro-3,3’’’’-bis(trifluoromethyl)-2’’,3’’,5’’,6’’,-Tetra(trifluoromethyl)phenyl-[1,1’:4’,1’’:4’’,1’’’:4’’’,1’’’’-quinque phenyl]. The degree of sulfonation was controlled by different concentration of reagents so that the ion exchange capacity (IEC) value of sulfonated polymers were measured by titration method ranging from 1.32 to 2.69 mmol/g.
The weight-average molecular weight of polymers ranging from 9.2×104 to 1.1×105 g/mol. The designed chemical structures were confirmed by NMR and FTIR analysis. All polymer membranes exhibit good thermal stabilities and mechanical strength. The thermal decomposition temperature of polymers decreased with increasing IEC, ranging from 217oC to 267oC. Tensile strengths of sG1 and sG2 membranes ranged from 26~48MPa, with elongations at break ranging from 11~21% and Young’s moduli ranging from 0.44 to 0.57 GPa at room temperature, 60% relative humidity. The polymers incorporating trifluoromethyl groups not only enhanced dimensional stability but also increased proton conductivity with increasing IEC. TEM analysis of the polymers, in the dehydrated state, revealed isolated spherical aggregates of ions, which presumably coalesce when hydrated to provide highly conductive pathways. The maximum power density of sG2-2.00 at 80oC and 100 % RH is 260mW/cm2, respectively.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 ix
表次 xii
第一章 序論 1
1-1前言 1
1-2燃料電池種類 2
1-3質子交換膜燃料電池工作和傳導機制 4
1-3-1工作機制 4
1-3-2傳導機制 5
1-4質子交換膜種類 7
1-4-1全氟離子性高分子薄膜 (Perfluorinated polymer) 7
1-4-2部分氟化高分子薄膜 (Partially perfluorinated polymer) 8
1-4-3非氟離子性高分子薄膜 (Non-perfluorinated polymer) 9
1-4-4酸鹼高分子薄膜 (Acid-base blends polymer) 9
1-4-5有機/無機混摻薄膜 (Organic/Inorganic blend membrane) 9
1-5質子交換膜的結構設計 10
1-6文獻回顧 12
1-7研究動機 19
第二章 實驗儀器介紹與原理 20
2-1鑑定分析儀器 20
2-1-1高磁場液態核磁共振儀 (Nuclear Magnetic Resonance, NMR) 20
2-1-2基質輔助雷射脫附游離飛行時間質譜儀 (MALDI TOF/TOF) 21
2-1-3 凝膠滲透層析儀 (Gel Permeation Chromatography, GPC) 22
2-1-4 傅立葉紅外線光譜儀 (Fourier Transform infrared spectro scopy, FT-IR) 23
2-2 熱分析儀器 24
2-2-1 熱重量分析儀 (Thermogravimetric Analyzer, TGA) 24
2-2-2熱示差掃描卡量計 (Differential Scanning Calorimetr, DSC) 25
2-2-3熱機械分析儀 (Thermal Mechanical Analyzer, TMA) 26
2-3 微觀結構分析 27
2-3-1穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 27
2-4電性分析 28
2-4-1交流阻抗分析儀 (AC Impedance) 28
2-5 元件效率分析 29
2-5-1熱壓裝置 (Hot pressing equipment) 29
2-5-2燃料電池元件 (Membrane electrode assembly, MEA) 30
第三章 實驗 32
3-1藥品總表 32
3-2實驗流程 34
3-3多氟單體製備 35
3-3-1 35
3-3-2 36
3-3-3 37
3-3-4 38
3-3-5 39
3-3-6 40
3-3-7 42
3-4高分子聚合 44
3-4-1 G1高分子聚合 44
3-4-2 G2高分子聚合 46
3-5高分子磺酸化 48
磺酸化試劑 48
3-6磺酸化後處理 50
3-6-1薄膜製備與酸的置換 50
3-6-2離子交換能力 (Ion exchange capacity, IEC)測定 50
3-6-3尺寸安定性、吸水率 (Dimensional stability、Water uptake)量測 51
3-6-4 Hydration number (λ) 52
3-6-5氧化、水解穩定性 (Oxidative、Hydrolytic stability)量測 52
第四章 結果與討論 53
4-1材料結構鑑定 53
4-1-1GPC分析和1H NMR單體鑑定 53
4-1-2傅立葉紅外線光譜 (FT-IR)分析 57
4-2熱分析及機械特性 60
4-2-1 TGA和DSC熱穩定性分析 60
4-2-2 TMA機械強度特性分析 64
4-3薄膜之物理、化學性質分析 67
4-3-1 吸水率、尺寸安定性與λ值 67
4-3-2 氧化與水解穩定性 71
4-4薄膜電性及微相型態分析 72
4-4-1 薄膜質子導電度分析 72
4-4-2 TEM微相分離型態分析 74
4-5元件分析 75
第五章 結論 77
參考文獻 78
附錄 82
參考文獻 References
[1] 管衍德,燃料電池,全華圖書公司
[2] 台灣燃料電池資訊網 (http://www.tfci.org.tw/news/newsDetail.asp?id=1841)
[3] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, “A review of polymer electrolyte membrane fuel cells:Technology, applications, and needs on fundamental research”, Applied Energy, 2011, 88, 981-1007.
[4] B. Smitha, S. Sridhar, A. A. Khan, “Solid polymer electrolyte membranes for fuel cell applications - a review”, J. Membr. Sci., 2005, 259, 10-26.
[5] A. Siu, B. Pivovar, J. Horsfall, K. V. Lovell, S. Holdcroft, “Dependence of Methanol Permeability on the Nature of Water and the Morphology of Graft Copolymer Proton Exchange Membranes”, J. Polym. Sci. Part B: Polym. Physics. , 2006, 44, 2240-2252.
[6] C. Laberty-Rober, K. Valle, F. Pereira, C. Sanchez, “Design and properties of functional hybrid organic-inorganic membranes for fuel cells”, Chem. Soc. Rev., 2011, 40, 961-1005.
[7] T. J. Peckham, S. Holdcroft, “Structure-Morphology-Property Relationships of Non-Perfluorinated Proton-Conducting Membranes”, Adv. Mater., 2010, 22, 4667-4690.
[8] K. Jiao, X. Li, “Water transportin polymer electrolyte membrane fuel cells”, Progress in Energy and Combustion Science, 2011, 37, 221-291.
[9] P. Sarkar, A. K. Mohanty, P. Bandyopadhyay, S. Chattopadhyay, S. Banerjee, “Proton exchange properties of flexible diaminebased new fluorinated sulfonated polyimides”, RSC Adv., 2014, 4, 11848-11858.
[10] Y. D. Lim, D. W. Seo, S. H. Lee, H. H. Ju, T. W. Hong, D. M. Kim, H. C. Ju, W. G. Kim, “Synthesis and properties of cis/trans mixtures of bis(4-hydroxyphenyl)-1,2-diphenylethylene containing sulfonated poly(ethersulfone)s proton exchange Membranes”, International Journal of Hydrogen Energy, 2013, 38, 7667-7673.
[11] P. Y. Xu, K. Zhou, G. L. Han, Q. G. Zhang, A. M. Zhu, Q. L. Liu, “Fluorene-containing poly(arylene ether sulfone)s as anion exchange membranes for alkaline fuel cells”, J. Membr. Sci., 2014, 457, 29-38.
[12] A. K. Mohanty, S. Banerjee, H. Komber, B. Voit, “Imidoaryl biphenol based new fluorinated sulfonated poly(arylene ether sulfone) copolymers and their proton exchange membrane properties”, Solid State Ionics, 2014, 254, 82-91.
[13] 何基任,「應用於質子交換膜之磺酸化聚芳香醚高分子」,國立中山大學光電工程學系碩士論文 (2009)。
[14] 吳昇峰,「燃料電池使用之磺酸化聚芳香醚高分子」,國立中山大學光電工電工程學系碩士論文 (2010)。
[15] 阮凡軒,「新穎雙酚單體合成聚芳香醚高分子在軟性基板上之製備與特性研究」,國立中山大學光電工程學系碩士論文 (2011)。
[16] 湯凱鈞,「局部密集磺酸化聚芳香醚高分子應用於質子交換膜之研究」,國立中山大學光電工程學系碩士論文 (2012)。
[17] 朱孟涵,「磺酸化聚芳香醚高分子之合成及其在燃料電池質子交換膜上之應用」,國立中山大學光電工程學系碩士論文 (2012)。
[18] 陳家茵,「交替型磺酸化聚芳香醚高分子於燃料電池質子交換膜之合成及應用」,國立中山大學光電工程學系碩士論文 (2013)。
[19] 張家瑄,「交替型磺酸化聚芳香醚高分子苯環取代基對質子導電度的影響」,國立中山大學光電工程學系碩士論文 (2013)。
[20] 蘇文弘,「磺酸化無規共聚聚芳香醚高分子之合成及其應用於燃料電池質子交換膜上之評估」,國立中山大學光電工程學系碩士論文 (2013)。
[21] 龐俊傑,「含氟碳氫離子性高分子應用於燃料電池質子交換膜之研究」,國立中山大學光電工程學系碩士論文 (2014)。
[22] 徐以芸,「探討三氟甲基數目對於磺酸化聚芳香醚高分子薄膜特性之影響」,國立中山大學光電工程學系碩士論文 (2016)。
[23] 曾裕超,「磺酸化碳氫離子性高分子之製備及其在燃料電池質子交換膜上之應用」,國立中山大學光電工程學系碩士論文 (2016)。
[24] 林哲宏,「含氟磺化無規共聚聚芳香醚高分子應用於燃料電池質子交換膜之評估」,國立中山大學光電工程學系碩士論文 (2016)。
[25] 李旭峰,「高分子電解質之製備與燃料電池應用評估」,國立中山大學光電工程學系博士論文 (2015)。
[26] H. F. Lee, Y. C. Huang, P. H. Wang, C. C. Lee, Y. S. Hung, R. Gopal, S. Holdcroft, W. Y. Huang, “Synthesis of highly sulfonated polyarylene ethers containing alternating aromatic units”, Materials Today Communications, 2015, 114-121.
[27] K. Miyatake, Y. Chikashige, and M. Watanabe, “Novel Sulfonated Poly(arylene ether):A Proton Conductive Polymer Electrolyte Designed for Fuel Cells”, Macromolecules, 2003, 36,9691-9693
[28] B. C. Bae, K. Miyatake, M. Watanabe, “Sulfonated poly(arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications”, J. Membr. Sci., 2008, 310, 110-118.
[29] C. Wang, D. W. Shin, S. Y. Lee, N. R. Kang, G. P. Robertson, Y. M. Lee and M. D. Guiver, “A clustered sulfonated poly(ether sulfone) based on a new fluorene-based bisphenol monomer”, J. Mater. Chem., 2012, 22, 25093-25101.
[30] D. W. Seo, Y. D. Lim, S. H. Lee, Md. A. Hossain, Md. M. Islam, H. C. Lee, H. H. Jang, W. G. Kim, “Preparation and characterization of block copolymers containing multi-sulfonated unit for proton exchange membrane fuel cell”, Electrochimica Acta, 2012, 86, 352-359.
[31] B. Bae, K. Miyatake, M. Uchida, H. Uchida, Y. Sakiyama,T, Okanishi, M. Watanabe, “Sulfonated Poly(arylene ether sulfone ketone) Multiblock Copolymers with Highly Sulfonated Blocks. Long-Term Fuel Cell Operation and Post-Test Analyses”, ACS Appl. Mater. Interfaces, 2011, 3, 2786-279.
[32] A. K. Mohanty, E. A. Mistri, A. Ghosh, S. Banerjee, “Synthesis and characterizatio n of novel fluorinated poly(arylene ether sulfone)s containing pendant sulfonic acid groups for proton exchange membrane materials”, J. Membr. Sci., 2012, 409-410, 145-155.
[33] A. K. Mohanty, E. A. Mistri, S. Banerjee, H. Komber, B. Voit, “Highly Fluorinated Sulfonated Poly(arylene ether sulfone) Copolymers: Synthesis and Evaluation of Proton Exchange Membrane Properties”, Ind. Eng. Chem. Res., 2013, 52, 2772-2783.
[34] Z. Yuan, X. Li, Y. Duan, Y. Zhao, H. Zhang, “Highly stable membranes based on sulfonated fluorinated poly(ether ether ketone)s with bifunctional groups for vanadi um flow battery application”, Polym. Chem., 2015, 5385-5392.
[35] M. G. Dhara, S. Banerjee, “Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups”, Progress in Polymer Science, 2010, 35, 1022-1077
[36] T. Higashihara, K. Matsumoto, M. Ueda, “Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells”, Polymer, 2009, 50, 5341-5357.
[37] 葉昀生,「低介電含氟多面體倍半矽氧烷寡聚物/聚亞醯胺奈米複合材料合成與特性之研究」,國立雲林科技大學化學工程學系碩士論文 (2006)。
[38] K. F. Medzihradszky, J. M. Campbell, M. A. Baldwin, A. M. Falick, P. Juhasz, M. L. Vestal, A. L. Burlingame, “The Characteristics of Peptide Collision-Induced Dissociation Using a High-Performance MALDI-TOF/TOF Tandem Mass Spectrometer”, Anal. Chem., 2000, 72, 552.
[39] 東麗分析研究中心 (http://www.toray.cn/trc/kinougenri/zairyou/zai_007.html)
[40] P. Jacquinot, “New developments in interference spectroscopy”, Rep. Prog. Phys., 1960, 23, 267.
[41] J. Connes, P. Connes, “Near-Infrared Planetary Spectra by Fourier Spectroscopy. I. Instruments and Results”, J. Opt. Soc. Am. ,1966, 56, 896.
[42] Y. S. Ye, Y. C. Yen, C. C. Cheng, W. Y. Chen, L. T. Tsai, F. C. Chang, “Sulfonated poly(ether ether ketone) membranes crosslinked with sulfonic acid containing benzoxazine monomer as proton exchange membranes”, Polymer, 2009, 50, 3196-3203.
[43] M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, “Alternating Polymer Systems for Proton Exchange Membranes”, Chem. Rev., 2004, 104, 4587-4612.
[44] Y. C. Yen, Y. S. Ye, C. C. Cheng, C. H. Lu, L. D. Tsai, J. M. Huang, F. C. Chang, “The effect of sulfonic acid groups within a polyhedral oligomeric silsesquioxane containing cross-linked proton exchange membrane”, Polymer, 2010, 51, 84-91.
[45] B. Liu, G. P. Robertson, D. S. Kim, M. D. Guiver, W. Hu, Z. Jiang, “Aromatic Poly(ether ketone)s with Pendant Sulfonic Acid Phenyl Groups Prepared by a Mild Sulfonation Method for Proton Exchange Membranes”, Macromolecules, 2007, 40, 1934-1944.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.129.13.201
論文開放下載的時間是 校外不公開

Your IP address is 3.129.13.201
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code