Responsive image
博碩士論文 etd-0619116-171825 詳細資訊
Title page for etd-0619116-171825
論文名稱
Title
利用多量子核磁共振、X-ray繞射與熱重分析研究以鋰離子取代的全氟磺酸質子交換膜Nafion-117
Investigation of lithium substituted Nafion with multi-quantum filtered NMR, XRD and TGA
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-30
繳交日期
Date of Submission
2016-07-25
關鍵字
Keywords
質子交換膜、鋰離子取代、固態核磁共振、多量子相干濾波、四極核
Proton exchange membrane, lithium substitution, TGA, XRD, multi-quantum coherence filtering, quadrupolar nuclei, solid state NMR, Nafion
統計
Statistics
本論文已被瀏覽 5662 次,被下載 530
The thesis/dissertation has been browsed 5662 times, has been downloaded 530 times.
中文摘要
為了更深入地理解全氟磺酸化質子交換膜(如Nafion)的質子輸運機制,甲醇竄透及材料結構,老化和壽命等問題,近年來用金屬離子(例如: 鋰、鈉、銣等鹼金屬離子)取代質子交換膜中磺酸根末端氫離子的研究開始引人注意。已有初步結果表明金屬離子取代後的Nafion-117(N117)在動態、表面結構,質子傳導率以及力學性質等都會與原先的N117有很大的不同,也表明金屬離子作為新的探針確實能提供有關膜結構和動態新的資訊。由於鋰是四極核(6Li, 7Li自旋分別為1和3/2),對其所在位置的電場梯度敏感,因此7Li(7Li豐度超過92%)是一個探測材料或組織微觀結構和動態的靈敏探針。在含水量大於2左右,N117中的動性已經足夠使電四極作用基本上被平均掉,從而提供較窄的光譜。因此,這是多量子濾波方法(multi-quantum filtered spectra, MQF)能夠發揮優勢的體系,可以使我們能夠獲得鋰離子取代的N117的新的結構和動態資訊。對同一樣品,我們可以獲得不同階MQF光譜,包括零量子濾波(ZQF)、雙量子濾波(DQF)與三量子濾波(TQF)光譜。利用這些MQF光譜,一維氫光譜與單脈衝鋰光譜,搭配X-ray繞射(XRD)以及熱重量分析(TGA)結果,對不同取代率以及不同含水量λ的N117做了一系列研究。從乾膜(λ=0)開始逐步變濕的過程所獲得氫譜和鋰譜可以看到它們都是由很寬逐步演化到很窄,清楚地呈現膜內水及鋰離子動態的逐步變化過程。常溫1H和7Li譜實驗顯示λ~ 2膜的譜寬變得較窄,因此可推測此時修飾上N117的鋰離子動性已經很高,這說明磺酸根的快速轉動擴散在λ~ 2時已經啟動,但要到λ~ 4時才會接近類似液態的光譜; 另外,對ZQF,DQF,TQF光譜的結果互相比較後在濕膜可觀察到零量子光譜訊號較佳,雙量子訊號較差,暗示7Li離子的行為傾向各相同性(isotropic),其有效四極偶合常數(quadrupole coupling constant)非常小,且鋰離子與通道內的水作用力也非常強。由一維1H與7Li譜變溫實驗光譜我們可以得知在低溫下(Ex. 243 K)奈米通道內的水並非完全結冰;而隨著溫度不斷上升(Ex. 243 K至283 K)化學位移也不斷增加,這也顯示了溫度越高,鋰離子與結晶水、鋰離子與磺酸根的作用力都更弱。XRD 和TGA提供了一些佐證和補充資訊。例如,XRD結果表明離子取代後的形貌呈現稍少的短程有序結構,但多了一些長程的有序結構。從TGA的結果我們可以觀察到鋰離子取代越高的薄膜,其熱分解的溫度也高,這也顯示了鋰離子與磺酸根的鍵能強於質子與磺酸根的鍵能,也導致C─S鍵能增加。
本工作顯示結合質子和鋰離子的1D光譜和鋰四極核的多量子濾波光譜對理解Nafion的水合過程,離子和水的交互作用,Nafion的結構和動態,能提供有價值的資訊。
Abstract
Metal cations such as lithium can readily substitute proton of the sulfonic group in Nafion, the mostly used proton exchange membrane (PEM) for H2-O2 fuel cells. The substitution dynamics and kinetics and the consequences of cation substitution on the structure, morphology and proton transport of Nafion, however, have not been studied. To better understand the structure and morphology of Nafion so that its performance can be improved or better PEMs may be developed, it is important to answer these questions. In this work, we conduct NMR studies of lithium substituted Nafion samples (of different lithium substitution ratios and different hydration levels) with 1D 1H and 7Li spectra, variable temperature (VT) spectra, and more importantly, the multi-quantum filtered (MQF) spectra, supplemented with XRD, SEM and TGA results. The evolution profile of the 1H and 7Li spectral patterns of the samples was obtained over a broad hydration level (λ= 0 - 18), displaying the gradual change of the dynamics of water and lithium cations in Nafion. The spectra show that the fast dynamics sets in whenλ~ 2 and liquid-like dynamics of water and lithium cations appears atλ~ 4. By further analyzing the MQF results, the interaction between lithium and water can be quantified and this information can be employed to understand the substitution effects on the structure, morphology and proton transport of Nafion. The linewidth and chemical shift from VT spectra can provide precious information on the water and lithium cations in nano-pores and nano-channels (e.g. the narrow linewidth at 243 K indicates that at least a part of water is not frozen; the down-field shift of peak with increase of temperature implies that lithium-water and/or lithium-sulfonate interactions are weakened with temperature rise). The NMR results are supplemented with XRD and TGA. XRD results show that the morphology is slightly more ordered after lithium substitution. TGA data show that the samples with higher degrees of substitution have higher decomposition temperature, suggesting that lithium-sulfonate bonding is stronger than proton-sulfonate boding. We demonstrate that combining NMR and other methods, important information on lithium-substitution dynamics, lithium-water interaction, the structure, morphology, proton dynamics of Nafion, can be elucidated.
目次 Table of Contents
目錄
中文摘要...................................................................................................i
英文摘要……………………………………………………………………………... ii
目錄………………………………………….………………………………..…….…iii
圖目錄………………………………………….……………………….………..……v
表目錄.....................................................................................................viii
第一章 緒論..............................................................................................1
1.1 質子交換膜簡介...................................................................................1
1.2 PEM發展簡史.....................................................................................4
1.3 文獻回顧.............................................................................................6
1.4 研究動機............................................................................................11
第二章 核磁共振基本理論簡介...................................................................12
2.1核磁共振之四極核種基本理論................................................................12
2.2 NMR鬆弛(Relaxation).....................................................................16
2.2.1 T1縱向鬆弛速率(longitudinal relaxation).........................................16
2.2.2 T2橫向鬆弛(transverse relaxation)................................................19
2.3 零量子濾波(Zero Quantum Filtering, ZQF)實驗......................................21
2.4 雙量子濾波(Double Quantum Filtering, DQF)實驗................................- 22 -
2.5 参量子濾波實驗(Triple Quantum Filtering, TQF)...................................- 22 -
第三章 實驗部分.......................................................................................24
3.1 實驗藥品............................................................................................24
3.1.1氯化鋰(LiCl, lithium chloride)..............................................................24
3.1.2 Nafion 117 ......................................................................................25
3.2 樣品製備............................................................................................26
3.2.1不同莫爾分率鋰離子取代Nafion-117薄膜製備 .......................................26
3.3儀器設置..............................................................................................28
3.3.1 儀器設備..........................................................................................28
3.3.2 儀器條件..........................................................................................28
第四章 結果與討論..................................................................................- 31 -
4.1不同鋰離子取代不同含水量(λ=0~20)1H靜態一維光譜比較.......................- 31 -
4.2不同鋰離子取代不同含水量7Li靜態與動態一維光譜分析............................35
4.3不同鋰離子取代不同含水量一維ZQF光譜比較..........................................42
4.4不同鋰離子取代不同含水量一維DQF光譜................................................48
4.5不同鋰離子取代不同含水量一維TQF光譜 ...............................................55
4.6不同鋰離子取代低溼度薄膜熱重分析儀(TGA)光譜比較.............................60
4.7不同鋰離子取代低溼度膜XRD光譜.........................................................61
4.8不同鋰離子取代低溼度薄膜SEM光譜.....................................................64
第五章 結論.............................................................................................66
參考文獻...............................................................................................- 66 -
參考文獻 References
1. Ogawa, T.; Kamiguchi, K.; Tamaki, T.; Imai, H.; Yamaguchi, T. Differentiating Grotthuss Proton Conduction Mechanisms by Nuclear Magnetic Resonance Spectroscopic Analysis of Frozen Samples. Anal. Chem. 2014, 86, 9362−9366.
2. Peighambardoust, S. J.; Rowshanzamir, S.; Amjadi, M. Review of the proton exchange membranes for fuel cell applications. International journal of hydrogen energy. 2010, 35, 9349-9384.
3. Sakai, T.; Takenako, H.; Wakabayashi, N.; Kawami, Y.; Torikai, E. Gas Permeation Properties of Solid Polymer Electrolyte (SPE) Membranes. J. Electrochem. Soc.: Electrochemical science and technology. 1985, 132, 1328-1331.
4. Fan, Y.; Zhang, M.; Moore, R. B.; Cornelius, C. J. Structure, physical properties, and molecule transport of gas, liquid, and ions within a pentablock copolymer. Journal of Membrane Science. 2014, 464, 179–187.
5. Feldheim, D. L.; Lawson, D. R.; Martin, C. R. Influence of the Sulfonate Countercation on the Thermal Stability of Nafion Perfluorosulfonate Membranes. Polymer Physics, 1993, 31, 953-957.
6. Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature. 2001, 414, 345-352.
7. Li, H.; Tang, Y.; Wang, Z.; Shi, Z.; Wu, S.; Song, D.; Zhang, J.; Fatih, K.; Zhang, J.; Wang, H.; Liu, Z.; Abouatallah, R.; Mazza, A. A review of water flooding issues in the proton exchange membrane fuel cell. Journal of Power Sources. 2008, 178, 103–117.
8. Lage, L. G.; Delgado, P. G.; Kawano, Y. Thermal Stability and decomposition of Nafion Membranes with different cations using high-resolution thermogravimetry. Journal of Thermal Analysis and Calorimetry. 2004, 75, 521–530.
9. Almeida, S. H.; Kawano, Y. Thermal Behavior of Nafion Membranes. J. Therm. Anal. Cal. 1999, 58, 569-577.
10. Wilkie, C. A.; Thomsen, J. R.; Mittleman, M. L. Thermogravimetric Analysis-Infrared Spectroscopy. J. Appl. Polym. Sci. 1993, 42, 677-691.
11. Bunce, N. J.; Sondheimer, S. S.; Fyfe, C. A. Proton NMR method for the quantitative determination of the water content of the polymeric fluorosulfonic acid Nafion-H. Macromolecules. 1986, 19, 333-339.
12. Yeo, S. C.; Eisenberg, A. Physical Properties and Supermolecular Structure of Perfluorinated Ion-Containing (Nafion) Polymers. J. Appl. Polym. Sci. 1977, 21, 875-898.
13. Eisenberg, A.; Matsuura, H.; Yokoyama, T. The glass Transition of Aliphatic Ionenes. Polymer Journal. 1971, 2, 117-123.
14. Fujimura, M.; Hashimoto, T.; Kawai, H. Small-Angle X-ray Scattering Study of Perfluorinated Ionomer Membranes. 1. Origin of Two Scattering Maxima. Macromolecules. 1981, 14, 1309-1315.
15. Blanton, T. N.; Koestner, R. Characterization of Nafion Proton Exchange Membrane. International Centre for Diffraction Data. 2015, 1097-0002.
16. Gierke, T. D.; Munn, G. E.; Wilson, F. C. The Morphology in Nafion Perfluorinated Membrane Products, as Determined by Wide- and Small- Angle X-Ray Studies. J. Polym. Sci. Polym. Phy. Ed. 1981, 19, 1687-1704.
17. Starkweather, H. W. Crystallinity in Perfluorosulfonic Acid Ionomers and Related Polymers. Macromolecules. 1982, 15, 320-323.
18. Mauritz , K. A.; Moore, R. B. State of Understanding of Nafion. Chem. Rev. 2004, 104, 4535-4585.
19. Man, P. P. Quadrupole Couplings in Nuclear Magnetic Resonance, General Nuclear Magnetic Resonance and Electron Spin Resonance Spectroscopy. Encyclopedia of Analytical Chemistry. 2006, 12224–12265.
20. Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Physical Review. 1948, 73, 679-746.
21. Navon, G.; Hadassah, S.; Eliav, U.; Seo, Y. Multiquantum filters and order in tissues. NMR Biomed. 2001, 14, 112–132.
22. Perea, W.; Cannella, M.; Vega, A. J.; Polenova, T.; Marcolongo, M. 2H double quantum filtering (DQF) NMR can determine degenerative changes in the nucleus pulposus of the intervertebral disc. Magn. Reson. Med. 2007, 57, 990–999.
23. Ooms, K. J.; Cannella, M.; Vega, A. J.; Marcolongo, Michele.; Polenova, T. The application of 23Na double-quantum-filter (DQF) NMR spectroscopy for the study of spinal disc degeneration. Magn. Reson. Med. 2008, 60, 246–252.
24. Pekar, J.; Renshaw, P. F.; Leigh, J. S. Selective detection of intracellular sodium by coherence-transfer NMR. Magn. Reson. 1987, 72, 159–161.
25. Hutchison, R.B.; Shapiro, J. I. Measurement of intracellular sodium with NMR methods. Conc. Magn. Reson. 1991, 3, 215–236.
26. Eliav, U.; Navon, G. Nuclear-magnetic-resonance line-shapes of double and triple quantum coherences of spin 3/2 nuclei. Chem. Phys. 1991, 95, 7114–7118.
27. Eliav, U.; Navon, G. Analysis of double-quantum-filtered NMR-spectra of Na-23 in biological tissues. Magn. Reson. B. 1994, 103, 19–29.
28. Eliav, U.; Shinar, H.; Navon, G. The formation of a 2nd-rank tensor in Na-23 double-quantum-filtered NMR as an indicator for order in a biological tissue. Magn. Reson. 1992, 98, 223–229.
29. Knubovets, T.; Shinar, H.; Eliav, U.; Navon, G. A Na-23 multiple-quantum-filtered NMR study of the effect of the cytoskeleton conformation on the anisotropic motion of sodium ions in red blood cells. Magn. Reson. B. 1996, 110, 16–25.
30. Shinar, H.; Knubovets, T.; Eliav, U.; Navon, G. Sodium interaction with ordered structures in mammalian red-blood-cells detected by Na-23 double quantum NMR. Biophys. 1993, 64, 1273–1279.
31. Hutchison, R. B.; Malhotra, D.; Hendrick, R. E.; Chan, L.; Shapiro, J. I. Evaluation of the double-quantum filter for the measurement of intracellular sodium concentration. Biol. Chem. 1990, 265, 15506–15510.
32. Kemp-Harper, R.; Wickstead, B.; Wimperis, S. Sodium ions in ordered environments in biological systems: analysis of Na-23 NMR spectra. Magn. Reson. 1999, 140, 351–362.
33. Borthakur, A.; Shapiro, E. M.; Beers, J.; Kudchodkar, S.; Kneeland JB, Reddy R. Effect of IL-1 beta-induced macromolecular depletion on residual quadrupolar interaction in articular cartilage. J Magn Reson Imaging 2002;15:315–323.
34. Eliav, U.; Navon, G. Quadrupole-echo techniques in multiple-quantum-filtered NMR spectroscopy of heterogeneous system. Magn. Reson. A. 1995, 115, 241–253.
35. Reddy, R.; Li, S. C.; Noyszewski, E.A.; Kneeland, J. B, Leigh, J. S. Detection of residual quadrupolar interaction in human skeletal muscle and brain in vivo via multiple quantum filtered sodium NMR spectra. Magn, Reson. Med. 1995, 33, 134–139.
36. Reddy, R.; Li, S. C.; Noyszewski, E. A.; Kneeland, J. B.; Leigh, J. S. In vivo sodium multiple quantum spectroscopy of human articular cartilage. Magn. Reson. Med. 1997, 38, 207–214.
37. Insko, E. K.; Kaufman, T. H.; Leigh, J. S.; Reddy, R. Sodium NMR evaluation of articular cartilage degradation. Magn. Reson. Med. 1999, 41, 30–34.
38. Shinar, H.; Eliav, U.; Knubovetz, T.; Sharf, Y.; Navon, G. Measurement of order in connective tissues by multiple quantum filtered NMR spectroscopy of quadrupolar nuclei. Magn. Reson. Biol. Med. 1995, 2, 73–82.
39. Eliav, U.; Navon, G. Quadrupolar echo techniques in multiple quantum filtered NMR spectroscopy of heterogeneous systems. J. Magn. Reson. A. 1995, 115, 241–253.
40. Kreuer, K. D.; Paddison, S. J.; Spohr, E.; Schuster, M. Transport in Proton Conductors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenology. Chem. Rev. 2004, 104, 4637−4678.
41. Eigen, M. Proton Transfer, Acid-Base Catalysis, and Enzymatic Hydrolysis. Angew. Chem. Int. Ed. 1964, 3, 1−72.
42. Bodenhausen G, Kogler H, Ernst RR. Selection of coherence-transfer pathways in NMR pulse experiments. J. Magn. Reson. 1984, 58, 370–388.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code