Responsive image
博碩士論文 etd-0619116-230358 詳細資訊
Title page for etd-0619116-230358
論文名稱
Title
以化學汽相沉積法成長氧化鎵於(100)鋁酸鋰基板
Growth of Gallium Oxide on(100)γ-LiAlO2 Substrate by Chemical Vapor Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-13
繳交日期
Date of Submission
2016-07-25
關鍵字
Keywords
寬能隙半導體、氧化鎵、化學汽相沉積、鋁酸鋰
wide-band-gap semiconductor, Chemical Vapor Deposition, LiAlO2, Gallium Oxide
統計
Statistics
本論文已被瀏覽 5708 次,被下載 41
The thesis/dissertation has been browsed 5708 times, has been downloaded 41 times.
中文摘要
本研究使用化學汽相沉積法 (Chemical Vapor Deposition, CVD)於(100)鋁酸鋰(LiAlO2, LAO)基板上成長氧化鎵。本實驗使用氬氣及氧氣混合氣體作為載送氣體及反應氣體,以鎵金屬作為反應源,固定反應壓力30torr,反應溫度為750oC~950oC。實驗完成後,利用掃描式電子顯微鏡(SEM)、X光繞射分析(XRD)、穿透式電子顯微鏡(TEM)、陰極螢光(CL)、拉曼光譜分析(Raman),穿透光譜分析,探討其微觀形貌、晶體結構、生長機制、生長方向及其發光特性。
本研究分為四部份:第一部份實驗研究反應源與基板相對位置氧化鎵的成長其反應為時間30分鐘。第二部份實驗以第一部份實驗參數為架構,將反應時間增加為90分鐘。第三部份實驗以基板溫度做為改變參數,第四部份實驗為增加氧氣流量,觀察氧化鎵生長情形。
實驗結果在LAO基板上生成亞穩態γ-氧化鎵,其上轉變為穩態β-氧化鎵,γ-氧化鎵在介面層中穩定存在,β-氧化鎵生長具有異向性(anisotropy),並以(2 ̅01)β-Ga2O3 || (111)γ-Ga2O3,(111)γ-Ga2O3 || (100)LAO,發展出三種晶向β-氧化鎵variant。其放光性質主要落在紫外光波段,並具有寬能隙值4.87eV。
Abstract
In this study, gallium oxide (Ga2O3) was grown on LiAlO2 (LAO) substrate by chemical vapor deposition (CVD). Argon and oxygen are used as carrier gas and reaction gas, respectively. Pure gallium metal is used as reaction source. The growth pressure is controlled at 30 torr. The growth temperature is at 750oC~950oC respectively. After the reaction of Ga2O3 grown, we used scanning electron microscope, x-ray diffractometer, transmission electron microscope, cathode- luminescence, Raman and transmissionphoto spectroscopy, to analyze the characteristics of Ga2O3, such as crystal structure, surface morphology, growth mechanism, optical properties and energy band gap.
There are four parts in this experiment: First, the relative location between Gallium source and substrate was investigated in growth time 30 minutes. Second, the experiment parameter was under the condition of the first part, but the growth time was added to 90 minutes. Third, the changed parameter value of this part was the temperature of substrate. The last, the extra oxygen was added to observe the growth situation.
There are two different phase of Ga2O3 grown on LAO. The crystal orientation relationship is (2 ̅01)β-Ga2O3 || (111)γ-Ga2O3 and (111)γ-Ga2O3 || (100)LAO. Although γ-Ga2O3 is metastable phase, but it stably exist at the interlayer. The growth of β-Ga2O3 is anisotropy, (2 ̅01)β-Ga2O3 is parallel to substrate with three different direction variants. The analytic results of cathodoluminescence showed the luminescence property of ultraviolet emission, and showed the band gap of 4.87 eV.
目次 Table of Contents
摘要 i
Abstract ii
圖目錄 v
1. 第一章 緒論 1
2. 第二章 文獻回顧與理論基礎 2
2-1 氧化鎵材料(Gallium Oxide, Ga2O3) 2
2-1-1氧化鎵的結構與基本性質 2
2-1-2氧化鎵的放光特性 4
2-1-3氧化鎵的製程及應用 5
2-2鋁酸鋰(LiAlO2, LAO)的結構與性質 6
2-3化學汽相沉積法 (Chemical Vapor Deposition, CVD) 7
2-4 薄膜的成長模式 9
2-5 氧化鎵生長於藍寶石(Sapphire)基板 10
2-6氧化鎵生長於氧化鎂(MgO)基板上 13
2-7 γ相氧化鎵 14
2-8研究動機 15
3. 第三章 實驗內容 16
3-1 實驗流程 16
3-2實驗裝置 17
3-2-1反應氣體輸送裝置 17
3-2-2加熱反應爐 17
3-2-3抽真空暨排氣裝置 17
3-3實驗步驟 17
3-3-1基板處理 17
3-3-2氧化鎵製程方法 18
3-3-3 實驗參數 18
3-4 量測設備簡介 19
4. 第四章 實驗結果 22
4-1探討反應源與基板相對位置 22
4-1-1 X光繞射分析 22
4-1-2 微觀形貌觀察 24
4-2增加反應時間氧化鎵生長於LAO (100)基板 28
4-2-1 X光繞射分析 28
4-2-2 微觀形貌觀察 30
4-3改變成長溫度 33
4-3-1 X光繞射分析 33
4-3-2 微觀形貌觀察 35
4-4增加氧氣流量 39
4-4-1 X光繞射分析 39
4-4-2 微觀形貌觀察 39
4-5電子背向散射繞射分析(Electron Back-Scattered Diffraction, EBSD) 42
4-6穿透式電子顯微鏡分析(Transmission Electron Microscope, TEM) 45
4-7拉曼光譜分析 50
4-8陰極螢光光譜分析(Cathodoluminescence, CL) 53
4-9穿透光譜分析 55
5. 第五章 討論 57
6. 第六章 結論 60
7. 第七章 參考文獻 61
參考文獻 References
1. D. Wang, Y. Lou, R. Wang, P. Wang, X. Zheng, Y. Zhang , and N. Jiang, Ceram. Int. 41 (2015) 14790.
2. X. C. Guo, N.H. Hao, D.Y. Guo, Z.P. Wu, Y. H. An, X. L. Chu , L. H. Li, P. G. Li, M. Lei, and W. H. Tang, J. Alloys Compd. 660 (2016) 136.
3. P. C. Chang, Z. Fan, W. Y. Tseng, A. Rajagopal, and J. G. Lu, Appl. Phys. Lett. 87 (2005) 222102.
4. T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, IEEE J. Sel. Top. Quantum Electron. 20 (2014) 3802006.
5. H. H. Tippins, Phys. Rev. A316 (1965) 140.
6. Stefanie A. Hering, ”Synthetic Investigations in Rare-Earth Borates, Gallates, Oxides, and Gallium Oxonitrides at Extreme Conditions”, 2009, pp.106.
7. J. Åhman, G. Svensson, and J. Albertsson, Acta Cryst. C52 (1996) 1336.
8. M. Zinkevich, and F. Aldinger, J. Am. Ceram. Soc. 87 (2004) 683.
9. Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu,
Phys. Rev. B69 (2004) 075304.
10. E. Nogales, J. Á. García, B. Méndez, and J. Piqueras, Appl. Phys. Lett. 91 (2007) 133108.
11. E. Nogales, J. Á. García, B. Méndez, and J. Piqueras, J. Appl. Phys. 101 (2007) 033517.
12. L. Binet, and D. Gourier, J. Phys. Chem. Solids 59 (1998) 1241.
13. C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, Appl. Phys. Lett. 78 (2001) 3202.
14. S. Y. Zhang, H. Z. Zhuang, C. S. Xue, B. Li, J. Shen, and D. Wang, Acta Phys. Pol. A112 (2007) 1195.
15. J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee J., Phys. Chem. B106 (2002) 9536.
16. H. S. Chung, S. C. Kim, D. H. Kim, J. W. Kim, O. J. Kwon, C. Park, and K. H. Oh, J. Korean Phys. Soc. 55 (2009) 68.
17. U. M. Graham, S. Shashank, M. K. Sunkara, and B. H. Davis, Adv. Funct. Mater 13 (2003) 576.
18. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, J. Cryst. Growth 378 (2013) 591.
19. W. Zhaoa, Y. Yanga, R. Haoa, F. Liua, Y. Wanga, M. Tana, J. Tanga, D. Rena, and D. Zhao, J. Hazard Mater. 192 (2011) 1548.
20. D. H. Kim, S. H. Yoo, T. M. Chung, K. S. An, H. S. Yoo, and Y. Kim, Bull. Korean Chem. Soc. 23 (2002) 225.
21. K. W. Chang, and J. J. Wu, Adv. Mater 16 (2004) 545.
22. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett. 100 (2012) 013502.
23. T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, IEEE J. Sel. Top. Quantum Electron. 20 (2014) 3802006.
24. T. Oshima, T. Okuno, N. Arai1, N. Suzuki1, S. Ohira1, and S. Fujita, Appl. Phys. Express 1 (2008) 011202.
25. Dobrovinskaya, Elena R., Lytvynov, Leonid A., Pishchik, Valerian, “Sapphire” Springer (2009).
26. R. Dronskowski, Inorg. Chem. 32 (1993) 1.
27. L. Lei, D. He, Y. Zou, W. Zhang, Z. Wang, M. Jiang, and M. Du, J. Solid State Chem. 181 (2008) 1810.
28. A. P. de Kroon, G.W. Schäfer, and F. Aldinger, J. Alloy Compd. 314 (2001) 147.
29. 黃惠君,“鋁酸鋰晶體微結構缺陷分析之研究”,國立中山大學材料科學研究所博士論文(2008)。
30. B. Cockayne, and B. Lent, J. Cryst. Growth 54 (1981) 546.
31. M.M.C. Chou, H.C. Huang, D. Gan, and C.W.C. Hsu, Journal of Crystal Growth 291 (2006) 485.
32. H. O. Pierson, “Handbook of Chemical Vapor Deposition”, Second Edition, (1999) 12.
33. 田民波,“薄膜技術與薄膜材料”, 2007, pp.244-245。
34. J. E. Ayers,“Heteroepitaxy of Semiconductors”, 2006, pp.105-137.
35. 黃鐙興,“磊晶於鋁酸鋰基板的氧化鋅薄膜成長機構研究與缺陷分析”,國立中山大學材料科學研究所碩士論文(2008)。
36. E. Auer, A. Lugstein, S. Loffler1, Y. J. Hyun, W. Brezna, E. Bertagnolli1, and P. Pongratz, Nanotechnology 20 (2009) 434017.
37. J. J. Wu, and K. W. Chang, Adv. Mater. 6 (2004) 545.
38. Y. Lv, J. Ma, W. Mi, C. Luan, Z. Zhu, and H. Xiao, Vacuum 86 (2012) 1850.
39. W. Seiler, M. Selmane, K. Abdelouhadi, and J. Perrière, Thin Solid Films 589 (2015) 556.
40. M. Mitomea, S. Kohikib, K. Horib, M. Fukutab, and Y. Bandoa, J. Cryst. Growth. 286 (2006) 240.
41. M. Zinkevich, F. M. Morales, H. Nitsche, M. Ahrens, M. Ruhle, and F. Aldinger, Z. Metallkd. 95 (2004) 756.
42. T. Oshima, T. Nakazono, A. Mukai, and A. Ohtomo, J. Cryst. Growth 359 (2012) 60.
43. H. Hayashi, R. Huang, H. Ikeno, F. Oba, S. Yoshioka, and I. Tanaka, Appl. Phys. Lett. 89 (2006) 181903.
44. R. Huang, H. Hayashi, F. Oba, and I. Tanaka, J. Appl. Phys. 101 (2007) 063526.
45. C. H. Ho, C. Y. Tseng, and L. C. Tien, Opt. Express 18 (2010) 16360.
46. D. Dohy, G. Lucazeau, and A. Revcolevschi, J. Solid State Chem. 45 (1982) 180.
47. Y. H. Gao, Y. Bando, T. Sato, Y. F. Zhang, and X. Q. Gao, Appl. Phys. Lett. 81 (2002) 2267.
48. T. Harwig, F. Kellendonk, and S. Slappendel, J. Phys. Chem. Solids, 39 (1978) 675.
49. G. Guzmán-Navarro, M. Herrera-Zaldívar, J. Valenzuela-Benavides, and D. Maestre, J. Appl. Phys. 110 (2011) 034315.
50. P. Ravadgar, R. H. Horng, S. D. Yao, H. Y. Lee, B. R. Wu, S. L. Ou, and L. W. Tu, Opt. Express, 21 (2013) 24599.
51. 羅吉宗,“薄膜科技與應用”, 2005, pp.425-427。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code