Responsive image
博碩士論文 etd-0619117-095331 詳細資訊
Title page for etd-0619117-095331
論文名稱
Title
液相層析結合感應耦合電漿質譜儀於食物中六價鉻與含硫化合物之分析應用
Determination of chromium(VI) and sulfur containing compounds in food by HPLC-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-18
繳交日期
Date of Submission
2017-07-19
關鍵字
Keywords
感應耦合電漿質譜儀、液相層析法、硫、動態反應槽、鉻、食品
DRC, HPLC-ICP-MS, Chromium, Sulfur, Food
統計
Statistics
本論文已被瀏覽 5720 次,被下載 168
The thesis/dissertation has been browsed 5720 times, has been downloaded 168 times.
中文摘要
第一部分研究為利用液高效能液相層析法結合感應耦合電漿質譜儀,對食物樣品中之Cr(VI)進行分析。為了減輕來自背景的40Ar12C+與40Ar12CH+等的多原子離子光譜干擾,使用動態反應槽 ( Dynamic reaction cell ) 搭配NH3做為反應氣體,將干擾物反應成中性來減少干擾。在液相層析法中使用陰離子交換樹脂( Anion-exchange chromatography ) PRP-X100作為管柱,以硝酸銨作為動相以分離Cr(III)與Cr(VI),整體分析時間可於7分鐘內進行完成,Cr(VI)可得到0.067 ng mL-1之偵測極限,滯留時間、波峰高度與波鋒面積之再現性RSD皆優於3.2%。本研究利用鹼性溶液來進行萃取,在鹼性溶液中Cr(VI)比較穩定,可以避免鉻物種發生轉變,最後選用四甲基氫氧化銨 ( TMAH ) 為萃取試劑,並使用超音波震盪輔助萃取,最後將本方法應用於糖尿病保健食品、魚類與麵包中Cr(VI)的分析應用。

第二部分為利用液相層析法結合感應耦合電漿質譜儀對食品中的含硫化合物進行分析。由於感應耦合電漿質譜儀偵測硫會有很嚴重的光譜干擾,研究中選用O2做為動態反應槽的反應氣體,將32S與34S反應成32S16O與34S16O進行分析。在液相層析中使用陰離子交換層析法,將sulfite ( SO32- )、sulfate ( SO42- )及thiosulfate ( S2O32- )三種硫化合物分離,分析中為了使SO32-穩定,會在動相硝酸銨中添加甲醛使sulfite衍生化。整體分析時間5分鐘內分離SO32-、SO42-及S2O32-,可得到51 -62 ng mL-1之偵測極限。滯留時間、波峰高度與波鋒面積之再現性RSD皆優於3.7%。選用動相硝酸銨為萃取試劑,並使用超音波震盪輔助萃取,隨後用標準參考樣品NIST1573a Tomato Leaves進行方法的驗證,最後將此方法應用於金針花與巴西蘑菇樣品中含硫化合物的分析應用。
Abstract
First part of research focused on HPLC-ICP-MS for the determination of Cr(VI) in food samples. The interfering 40Ar12C+ and 40Ar12CH+ ions were reduced by using NH3 as reaction cell gas. The separation was performed by using anion-exchange liquid chromatography on a PRP-X100 column with 50 mM Ammonium nitrate (NH4NO3) and 1%(v/v) MeOH at pH 9.8 as a mobile phase. The overall analysis time this can be applied to within 7 minutes. The detection limits for Cr(VI) was found to be 0.067 ng mL-1. We were explored various other factors such as reproducibility of retention time, peak height and peak area were better than 3.2% RSD. In our experiment we were used alkaline solution to the extraction process, Cr(VI) is relatively stable in the alkaline conditions. The selections of TMAH as the extraction reagent was used by ultrasound assisted extraction techniques followed by this determine Cr(VI) in diabetes healthly food, fish and bread samples.

Second part of research methodology focused on HPLC-ICP-MS for the determination of sulfur containing compounds in food samples. The determination of sulfur compound ( S32 and S34 ) in ICP-MS techniques which had serious spectral interference, in order to avoid this problem we used dynamic reaction cell by oxygen (O2) as a reaction gas to determine the analysis ( 32S16O and 34S16O ). The separation was performed using anion-exchange liquid chromatography on a PRP-X100 column with 60 mM Ammonium nitrate (NH4NO3) and 0.1% (v/v) formaldehyde at pH 7.0 as mobile phase. The overall analysis time this can be applied to within 5 min. The detection limits for SO3- , SO42- and S2O32- were found to be 51-65 ng mL-1. Reproducibility of retention time, peak height and peak area were better than 3.7% RSD. The mobile phase was used as extraction reagent by ultrasound assisted extraction techniques. The method was applied and then validated by standard reference sample NIST1573a Tomato Leaves. Finally, this method was applied to lily flower and mushroom samples.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 xiii
表目錄 x

第一章 液相層析結合感應耦合電漿質譜儀於食物樣品中Cr(VI)之分析應用
壹、 前言 1
貳、 實驗部分 4
一、 儀器裝置 4
二、 藥品與溶液的配製 5
參、 實驗過程 7
一、 液相層析分離條件探討 7
二、 DRC-ICP-MS系統最適化探討 8
三、 再現性 9
四、 校正曲線及偵測極限 9
五、 萃取條件最適化探討 10
六、 樣品配製 10
肆、 結果與討論 14
一、 液相層析條件之分離條件最適化 14
二、 DRC-ICP-MS系統最適化探討 21
三、 再現性 28
四、 校正曲線及偵測極限 28
五、 萃取條件最適化探討 28
六、 真實樣品的分析 41
伍、 結論 52
陸、 參考文獻 53

第二章 液相層析結合感應耦合電漿質譜儀於食物樣品中含硫化合物之分析應用
壹、 前言 57
貳、 實驗部分 60
一、 儀器裝置與設備 60
二、 試藥與溶液的配製 60
參、 實驗過程 62
一、 液相層析分離條件探討 62
二、 DRC-ICP-MS系統最適化探討 62
三、 再現性 63
四、 校正曲線及偵測極限 63
五、 萃取條件最適化 64
六、 樣品配製 64
肆、 結果與討論 68
一、 液相層析條件之分離條件最適化 68
二、 DRC-ICP-MS系統最適化探討 74
三、 再現性 84
四、 校正曲線及偵測極限 84
五、 萃取條件最適化 84
六、 真實樣品的分析 87
伍、 結論 100
陸、 參考文獻 101
參考文獻 References
第一章
1. Zhang, H.; Liu, Q.; Wang, T.; Yun, Z.; Li, G.; Liu, J.; Jiang, G., Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples. Analytica Chimica Acta 2013, 770, 140-146.
2. Cuello, S.; Entwisle, J.; Benning, J.; Liu, C.; Coburn, S.; McAdam, K. G.; Braybrook, J.; Goenaga-Infante, H., Complementary HPLC-ICP-MS and synchrotron X-ray absorption spectroscopy for speciation analysis of chromium in tobacco samples. Journal of Analytical Atomic Spectrometry 2016, 31 (9), 1818-1829.
3. Wolf, R. E.; Morrison, J. M.; Goldhaber, M. B., Simultaneous determination of Cr (III) and Cr (VI) using reversed-phased ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2007, 22 (9), 1051-1060.
4. Markiewicz, B.; Komorowicz, I.; Sajnóg, A.; Belter, M.; Barałkiewicz, D., Chromium and its speciation in water samples by HPLC/ICP-MS–technique establishing metrological traceability: a review since 2000. Talanta 2015, 132, 814-828.
5. Popp, M.; Hann, S.; Koellensperger, G., Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry—a review. Analytica Chimica Acta 2010, 668 (2), 114-129.
6. Chen, Z.; Naidu, R.; Subramanian, A., Separation of chromium (III) and chromium (VI) by capillary electrophoresis using 2, 6-pyridinedicarboxylic acid as a pre-column complexation agent. Journal of Chromatography A 2001, 927 (1), 219-227.
7. Chen, Y.; Chen, J.; Xi, Z.; Yang, G.; Wu, Z.; Li, J.; Fu, F., Simultaneous analysis of Cr (III), Cr (VI), and chromium picolinate in foods using capillary electrophoresis‐inductively coupled plasma mass spectrometry. Electrophoresis 2015, 36 (9-10), 1208-1215.
8. Leist, M.; Leiser, R.; Toms, A., Low-level speciation of chromium in drinking waters using LC-ICP-MS. Spectroscopy Springfield then Eugene then Duluth 2006, 21 (3), 29.
9. Guo, X.; Liu, W.; Bai, X.; He, X.; Zhang, B., Speciation of chromium in chromium yeast. World Journal of Microbiology and Biotechnology 2014, 30 (12), 3245-3250.
10. Vacchina, V.; de la Calle, I.; Séby, F., Cr (VI) speciation in foods by HPLC-ICP-MS: investigation of Cr (VI)/food interactions by size exclusion and Cr (VI) determination and stability by ion-exchange on-line separations. Analytical and bioanalytical chemistry 2015, 407 (13), 3831-3839.
11. Petrucci, F.; Senofonte, O., Determination of Cr (VI) in cosmetic products using ion chromatography with dynamic reaction cell-inductively coupled plasma-mass spectrometry (DRC-ICP-MS). Analytical Methods 2015, 7 (12), 5269-5274.
12. Hagendorfer, H.; Goessler, W., Separation of chromium (III) and chromium (VI) by ion chromatography and an inductively coupled plasma mass spectrometer as element-selective detector. Talanta 2008, 76 (3), 656-661.
13. Wang, H. J.; Du, X. M.; Wang, M.; Wang, T. C.; Ou-Yang, H.; Wang, B.; Zhu, M. T.; Wang, Y.; Jia, G.; Feng, W. Y., Using ion-pair reversed-phase HPLC ICP-MS to simultaneously determine Cr (III) and Cr (VI) in urine of chromate workers. Talanta 2010, 81 (4), 1856-1860.
14. Pehlivan, E.; Arslan, G.; Gode, F.; Altun, T.; Özcan, M. M., Determination of some inorganic metals in edible vegetable oils by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Grasas y aceites 2008, 59 (3), 239-244.
15. Lin, Y. A.; Jiang, S. J.; Sahayam, A.; Huang, Y.L., Speciation of chromium in edible animal oils after microwave extraction and liquid chromatography inductively coupled plasma mass spectrometry. Microchemical Journal 2016, 128, 274-278.
16. Kuo, C. Y.; Jiang, S. J.; Sahayam, A., Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. Journal of Analytical Atomic Spectrometry 2007, 22 (6), 636-641.
17. Tokalıoğlu, Ş., Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chemistry 2012, 134 (4), 2504-2508.
18. Chiha, M.; Samar, M. H.; Hamdaoui, O., Extraction of chromium (VI) from sulphuric acid aqueous solutions by a liquid surfactant membrane (LSM). Desalination 2006, 194 (1-3), 69-80.
19. Watts, M. P.; Khijniak, T. V.; Boothman, C.; Lloyd, J. R., Treatment of alkaline Cr (VI)-contaminated leachate with an alkaliphilic metal-reducing bacterium. Applied and environmental microbiology 2015, 81 (16), 5511-5518.
20. Vitale, R.; Mussoline, G.; Petura, J.; James, B., Hexavalent chromium extraction from soils: evaluation of an alkaline digestion method. Journal of Environmental Quality 1994, 23 (6), 1249-1256.
21. Weibel, G.; Waber, H. N.; Eggenberger, U.; Mäder, U. K., Influence of sample matrix on the alkaline extraction of Cr (VI) in soils and industrial materials. Environmental Earth Sciences 2016, 75 (7), 1-14.
22. Sabty-Daily, R. A.; Luk, K. K.; Froines, J. R., The efficiency of alkaline extraction for the recovery of hexavalent chromium (Cr VI) from paint samples and the effect of sample storage on Cr VI recovery. Analyst 2002, 127 (6), 852-858.
23. Hernandez, F.; Séby, F.; Millour, S.; Noël, L.; Guérin, T., Optimisation of selective alkaline extraction for Cr (VI) determination in dairy and cereal products by HPIC–ICPMS using an experimental design. Food Chemistry 2017, 214, 339-346.
24. Zhu, X.; Hu, B.; Jiang, Z., Cloud point extraction combined with graphite furnace atomic absorption spectrometry for the determination of chromium species and their distribution in cigarette and cigarette ash. International Journal of Environmental Analytical Chemistry 2004, 84 (12), 927-934.
25. Ščančar, J.; Milačič, R., A critical overview of Cr speciation analysis based on high performance liquid chromatography and spectrometric techniques. Journal of Analytical Atomic Spectrometry 2014, 29 (3), 427-443.
26. Ma, H. L.; Tanner, P. A., Determination of chromium in airborne particulate matter by inductively coupled plasma dynamic reaction cell mass spectrometry. Journal of Environmental Monitoring 2008, 10 (10), 1217-1225.
27. Guerrero, M. L.; Alonso, E. V.; Pavón, J. C.; Cordero, M. S.; de Torres, A. G., On-line preconcentration using chelating and ion-exchange minicolumns for the speciation of chromium (III) and chromium (VI) and their quantitative determination in natural waters by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2012, 27 (4), 682-688.
28. D’Ilio, S.; Violante, N.; Majorani, C.; Petrucci, F., Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: Still a challenge? A review. Analytica Chimica Acta 2011, 698 (1), 6-13.
29. Chang, Y. L.; Jiang, S.-J., Determination of chromium in water and urine by reaction cell inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2001, 16 (12), 1434-1438.
30. Martone, N.; Rahman, G. M.; Pamuku, M.; Kingston, H. S., Determination of chromium species in dietary supplements using speciated isotope dilution mass spectrometry with mass balance. Journal of Agricultural and Food Chemistry 2013, 61 (41), 9966-9976.
31. Mathebula, M. W.; Mandiwana, K.; Panichev, N., Speciation of chromium in bread and breakfast cereals. Food Chemistry 2017, 217, 655-659.
32. Wolf, R. E.; Morman, S. A.; Hageman, P. L.; Hoefen, T. M.; Plumlee, G. S., Simultaneous speciation of arsenic, selenium, and chromium: species stability, sample preservation, and analysis of ash and soil leachates. Analytical and bioanalytical chemistry 2011, 401 (9), 2733.

第二章
1. Lin, L. Y.; Jiang, S. J., Determination of sulfur compounds in water samples by ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry. Journal of the Chinese Chemical Society 2009, 56 (5), 967-973.
2. Budesinsky, B., Determination of sulfur dioxide in air. Microchemical Journal 1977, 22 (1), 55-59.
3. Taylor, S. L.; Higley, N. A.; Bush, R. K., Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Advances in food research 1986, 30, 1-76.
4. 張炳揚, 亞硫酸鹽與食品. 食品工業 1988, 20 (11), 14-19.
5. Suh, H.-J.; Cho, Y.-H.; Chung, M.-S.; Kim, B. H., Preliminary data on sulphite intake from the Korean diet. Journal of food composition and analysis 2007, 20 (3), 212-219.
6. Szekeres, L., Analytical chemistry of the sulphur acids. Talanta 1974, 21 (1), 1-44.
7. Tomozo, K., Analytical Chemistry of Polythionates and Thiosulfate A Review. Analytical sciences 1990, 6 (1), 3-14.
8. Chen, P. Y.; Huang, C. C.; Chen, M. C.; Hsu, J. C.; Shih, Y., Determination of Sulfite in Hair Waving Products Using Oxygen‐Incorporated Gold‐Modified Screen‐Printed Electrodes. Electroanalysis 2012, 24 (12), 2267-2272.
9. Karimi-Maleh, H.; Ensafi, A. A.; Beitollahi, H.; Nasiri, V.; Khalilzadeh, M. A.; Biparva, P., Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: application for determination of sulfite in real samples. Ionics 2012, 18 (7), 687-694.
10. Bandekarc, J.; Sethna, R.; Kirschner, M., Quantitative determination of sulfur oxide species in white liquor by FT-IR. Applied spectroscopy 1995, 49 (11), 1577-1582.
11. Milicev, S.; Stergarsek, A., Qualitative and quantitative determination by Raman spectroscopy of different sulphur oxoacid anions, existing in equilibrium in oxidized leach liquors, produced by desulphurization of flue gases. Spectrochimica acta. Part A: Molecular spectroscopy 1989, 45 (2), 225-228.
12. Alamo, L. S. T.; Tangkuaram, T.; Satienperakul, S., Determination of sulfite by pervaporation-flow injection with amperometric detection using copper hexacyanoferrate-carbon nanotube modified carbon paste electrode. Talanta 2010, 81 (4), 1793-1799.
13. Dinçkaya, E.; Sezgintürk, M. K.; Akyılmaz, E.; Ertaş, F. N., Sulfite determination using sulfite oxidase biosensor based glassy carbon electrode coated with thin mercury film. Food Chemistry 2007, 101 (4), 1540-1544.
14. Filik, H.; Çetintaş, G., Determination of sulfite in water and dried fruit samples by dispersive liquid–liquid microextraction combined with uv–vis fiber optic linear array spectrophotometry. Food Analytical Methods 2012, 5 (6), 1362-1367.
15. Ruiz-Capillas, C.; Jiménez-Colmenero, F., Application of flow injection analysis for determining sulphites in food and beverages: A review. Food Chemistry 2009, 112 (2), 487-493.
16. Tzanavaras, P. D.; Thiakouli, E.; Themelis, D. G., Hybrid sequential injection–flow injection manifold for the spectrophotometric determination of total sulfite in wines using o-phthalaldehyde and gas-diffusion. Talanta 2009, 77 (5), 1614-1619.
17. Navarrro, M. V.; Payán, M. R.; López, M. A. B.; Fernández-Torres, R.; Mochón, M. C., Rapid flow injection method for the determination of sulfite in wine using the permanganate–luminol luminescence system. Talanta 2010, 82 (5), 2003-2006.
18. Motellier, S.; Descostes, M., Sulfur speciation and tetrathionate sulfitolysis monitoring by capillary electrophoresis. Journal of Chromatography A 2001, 907 (1), 329-335.
19. de Carvalho, L. M.; Schwedt, G., Sulfur speciation by capillary zone electrophoresis: Determination of dithionite and its decomposition products sulfite, sulfate and thiosulfate in commercial bleaching agents. Journal of Chromatography A 2005, 1099 (1), 185-190.
20. Poulson, R. E.; Borg, H. M., Separation and detection of sulfur-containing anions using single-column ion chromatography. Journal of chromatographic science 1987, 25 (9), 409-414.
21. Johnson, D. C.; Dobberpuhl, D.; Roberts, R.; Vandeberg, P., Pulsed amperometric detection of carbohydrates, amines and sulfur species in ion chromatography—the current state of research. Journal of Chromatography A 1993, 640 (1), 79-96.
22. Hansen, L.; Richter, B.; Rollins, D.; Lamb, J.; Eatough, D., Determination of arsenic and sulfur species in environmental samples by ion chromatography. Analytical chemistry 1979, 51 (6), 633-637.
23. Ni, Z.; Tang, F.; Liu, Y.; Shen, D.; Mo, R., Rapid Determination of Low-level Sulfite in Dry Vegetables and Fruits by LC-ICP-MS. Food Science and Technology Research 2015, 21 (1), 1-6.
24. Miura, Y.; Fukasawa, K.; Koh, T., Determination of sulfur anions at the ppb level by ion chromatography utilizing their catalytic effects on the postcolumn reaction of iodine with azide. Journal of Chromatography A 1998, 804 (1), 143-150.
25. MIURA, Y.; TSUBAMOTO, M.; Tomozo, K., Ion chromatographic determination of sulfide, sulfite and thiosulfate in mixtures by means of their postcolumn reactions with iodine. Analytical sciences 1994, 10 (4), 595-600.
26. Hissner, F.; Mattusch, J.; Heinig, K., Quantitative determination of sulfur-containing anions in complex matrices with capillary electrophoresis and conductivity detection. Journal of Chromatography A 1999, 848 (1), 503-513.
27. Deister, U.; Neeb, R.; Helas, G.; Warneck, P., Temperature dependence of the equilibrium CH2(OH)2 + HSO3- = CH2(OH)SO3- + H2O in aqueous solution. The Journal of Physical Chemistry 1986, 90 (14), 3213-3217.
28. O’Reilly, J. W.; Dicinoski, G. W.; Shaw, M. J.; Haddad, P. R., Chromatographic and electrophoretic separation of inorganic sulfur and sulfur–oxygen species. Analytica Chimica Acta 2001, 432 (2), 165-192.
29. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Detection of ultratrace phosphorus and sulfur by quadrupole ICPMS with dynamic reaction cell. Analytical chemistry 2002, 74 (7), 1497-1502.
30. Miura, Y.; Matsushita, Y.; Haddad, P. R., Stabilization of sulfide and sulfite and ion-pair chromatography of mixtures of sulfide, sulfite, sulfate and thiosulfate. Journal of Chromatography A 2005, 1085 (1), 47-53.
31. Zuo, Y.; Chen, H., Simultaneous determination of sulfite, sulfate, and hydroxymethanesulfonate in atmospheric waters by ion-pair HPLC technique. Talanta 2003, 59 (5), 875-881.
32. de Carvalho, L. M.; Schwedt, G., Sulfur speciation by capillary zone electrophoresis: conditions for sulfite stabilization and determination in the presence of sulfate, thiosulfate and peroxodisulfate. Fresenius' journal of analytical chemistry 2000, 368 (2), 208-213.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code