Responsive image
博碩士論文 etd-0619117-095424 詳細資訊
Title page for etd-0619117-095424
論文名稱
Title
液相層析結合感應耦合電漿質譜儀於酒品中砷與硒物種分析及食物中碲化合物之分析應用
Determination of arsenic and selenium species in wines and tellurium species in food by HPLC-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-18
繳交日期
Date of Submission
2017-07-19
關鍵字
Keywords
酒類、硒物種、碲物種、砷物種、物種分析、感應耦合電漿質譜儀、液相層析
Species analysis, HPLC-ICP-MS, Tellurite, Selenium, Arsenic, Wine
統計
Statistics
本論文已被瀏覽 5656 次,被下載 89
The thesis/dissertation has been browsed 5656 times, has been downloaded 89 times.
中文摘要
研究第一部份使用陰離子交換層析法(Anion exchange chromatography)結合感應耦合電漿質譜儀分析酒類樣品中砷與硒物種之含量。研究中利用PRP-X100陰離子交換管柱,動相A 為10 mM (NH4)2CO3和1% (v/v)甲醇(MeOH)(pH 8.0),動相B為70 mM (NH4)2CO3和1% (v/v)甲醇(MeOH)(pH 8.0),以梯度沖堤方式在11分鐘內同時分離As(Ⅲ)、DMA、MMA、As(Ⅴ)、Se(Ⅳ)和Se(Ⅵ)等六個物種,但由於78Se 和80Se的偵測上會有38Ar40Ar+及40Ar40Ar+所造成的同質量干擾,因此藉由動態反應槽(Dynamic Reaction Cell,DRC)系統,使用CH4作為反應氣體,將分析物及干擾物離子的質量或電荷改變以減輕干擾,以獲得準確之定量結果。砷物種偵測極限為0.005-0.01 ng mL-1之間,硒物種偵測極限為0.02-0.03 ng mL-1之間,各物種波峰高度和波峰面積之再現性RSD小於4.5% (n=5),所得校正曲線相關係數(r2)優於0.9993。將所建立的最適化系統應用於市售酒類樣品分析,其添加回收率(spike recovery)為94-106%,進一步證實本研究之可行性和準確性。
研究第二部分使用離子對逆相層析法(Ion pair reversed phase chromatography)結合感應耦合電漿質譜儀於食物中碲物種分析之應用,在此使用C8逆相層析管柱,以等位沖堤方式分離Te(Ⅳ)和Te(Ⅵ),動相為10 mM Ammonium citrate和2% (v/v) MeOH (pH 6.5),可快速並有效率的分離目標分析物,並於2分鐘內達到完全分離,Te(Ⅳ)和Te(Ⅵ)偵測極限分別為0.051和0.039 ng mL-1,碲物種波峰高度和波峰面積之再現性RSD優於5.7% (n=5),分析物所得校正曲線相關係數皆在0.9994以上。最後利用微波輔助萃取(Microwave assisted extraction)方式萃取香菇中的碲物種,以在動相溶液當中加入蛋白酶(Protease type XIV)作為萃取試劑,以提高碲的萃取效率,於70℃下萃取30分鐘,樣品萃取效率介於91-98%,本研究定量時有基質壓抑問題,因此改使用標準添加法,以準確定量真實樣品中碲物種之濃度。
Abstract
In the first parts, a method based on anion-exchange chromatography with ICP-MS for simultaneous determination of arsenic and selenium species in wines was developed. The separation was performed on a PRP-X100 anion exchange column using gradient elution program which contains 10 mM (NH4)2CO3 and 1% (v/v) MeOH at pH 8.0 as mobile phase A and 70 mM (NH4)2CO3 and 1% (v/v) MeOH at pH 8.0 as the second one. Simultaneous separation of four arsenic (As(Ⅲ), DMA, MMA and As(Ⅴ)) and two selenium species (Se(Ⅳ) and Se(Ⅵ)) was attained within 11 minutes. The potentially interfering 38Ar40Ar+ and 38Ar40Ar+ at the selenium mass m/z 78 and 80 were reduced by dynamic reaction cell system using CH4 as reaction cell gas. The limits of detection of the species were in the range of 0.005-0.01 ng mL-1 for arsenic and 0.02-0.03 ng mL-1 for selenium, respectively. The reproducibility of peak height and peak area were less than 4.5% form 5 replicate injections, and the linear coefficients of the calibration curves were better than 0.9993. The optimum system was applied to commercially wine samples. The spike recoveries were in the range of 94–106% to demonstrate the feasibility and the accuracy of the proposed method.
In the second parts, a method based on ion-pair reversed-phase chromatography with ICP-MS for simultaneous determination of tellurium species in food. The separation of Te(Ⅳ) and Te(Ⅵ)was performed on an ion-pair reversed-phase column C-8 by using isocratic elution with 10 mM Ammonium citrate and 2% (v/v) MeOH at pH 6.5 as mobile phase. This method was rapid and efficient to separate the target analysts. The limit of detection for tellurite and tellurate were 0.051 and 0.039 ng mL-1. The reproducibility of peak height and peak area were less than 5.7% form 5 replicate injections. The separation of tellurium species was attained within 2 minutes, and the linear coefficients of the calibration curves were better than 0.9994. Tellurium species was extracted from mushroom by microwave assisted extraction, which adding protease type XIV in the mobile phase as the extracted reagent to enhance the extraction efficiency. The extraction efficiency of tellurium species in the range of 91-98% under heating at 70℃ for 30 minutes. In our study, the standard addition method was used to accurately quantify the concentration of tellurium species in real samples due to the matrix effect.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x

第一章 液相層析結合感應耦合電漿質譜儀於酒類樣品中砷與硒物種分析之應用
壹、 前言 1
貳、 動態反應槽原理 5
參、 實驗部分 7
一、 儀器裝置與設備 7
二、 試藥與溶液的配製 7
肆、 實驗過程 13
一、 液相層析分離條件探討 13
二、 DRC-ICP-MS系統最適化探討 13
三、 再現性 15
四、 校正曲線及偵測極限 15
五、 樣品製備 16
伍、 結果與討論 17
一、 液相層析條件之分離條件最適化 17
二、 DRC-ICP-MS系統最適化探討 28
三、 再現性、檢量線與偵測極限 31
四、 真實樣品的分析應用 39
陸、 結論 47
柒、 參考文獻 48
第二章 液相層析結合感應耦合電漿質譜儀於食物中碲物種分析之應用
壹、 前言 52
貳、 實驗部分 55
一、 儀器裝置與設備 55
二、 試藥與溶液的配製 58
參、 實驗過程 61
一、 液相層析分離條件探討 61
二、 再現性 61
三、 校正曲線及偵測極限 61
四、 樣品製備 61
肆、 結果與討論 65
一、 液相層析分離條件探討 65
二、 重複性、檢量線與偵測極限 68
三、 樣品中碲物種總量與萃取效率探討 72
四、 真實樣品分析 80
伍、 結論 85
陸、 參考文獻 86
參考文獻 References
第一章
1. Marcinkowska, M.; Barałkiewicz, D., Multielemental speciation analysis by advanced hyphenated technique–HPLC/ICP-MS: A review. Talanta 2016, 161, 177-204.
2. Sakurai, T.; Kaise, T.; Ochi, T.; Saitoh, T.; Matsubara, C., Study of in vitro cytotoxicity of a water soluble organic arsenic compound, arsenosugar, in seaweed. Toxicology 1997, 122 (3), 205-212.
3. Leermakers, M.; Baeyens, W.; De Gieter, M.; Smedts, B.; Meert, C.; De Bisschop, H.; Morabito, R.; Quevauviller, P., Toxic arsenic compounds in environmental samples: Speciation and validation. TrAC Trends in Analytical Chemistry 2006, 25 (1), 1-10.
4. 行政院衛生福利部食品藥物管理署, 包裝飲用水及盛裝飲用水衛生標準. 2007.
5. Lyons, G. H.; Judson, G. J.; Ortiz-Monasterio, I.; Genc, Y.; Stangoulis, J. C.; Graham, R. D., Selenium in Australia: selenium status and biofortification of wheat for better health. Journal of Trace Elements in Medicine and Biology 2005, 19 (1), 75-82.
6. Rayman, M. P., The importance of selenium to human health. The Lancet 2000, 356 (9225), 233-241.
7. Burke, M. P.; Opeskin, K., Fulminant heart failure due to selenium deficiency cardiomyopathy (Keshan disease). Medicine, Science and the Law 2002, 42 (1), 10-13.
8. Rayman, M. P., Selenium in cancer prevention: a review of the evidence and mechanism of action. Proceedings of the Nutrition Society 2005, 64 (04), 527-542.
9. Abdulah, R.; Miyazaki, K.; Nakazawa, M.; Koyama, H., Chemical forms of selenium for cancer prevention. Journal of Trace Elements in Medicine and Biology 2005, 19 (2), 141-150.
10. Raymond, L. J.; Ralston, N. V., Mercury: selenium interactions and health implications. Seychelles Medical and Dental Journal 2004, 7 (1), 72-77.
11. Organization, W. H., Selenium in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. Available from: 〈http://www.who.int/water_sanitation_health/dwq/chemicals/selenium.pdf〉. 2011.
12. Nuttall, K. L., Evaluating selenium poisoning. Annals of Clinical & Laboratory Science 2006, 36 (4), 409-420.
13. 行政院衛生福利部國民健康署第七版國人膳食營養參考攝取量.
14. Ibanez, J. G.; Carreon-Alvarez, A.; Barcena-Soto, M.; Casillas, N., Metals in alcoholic beverages: A review of sources, effects, concentrations, removal, speciation, and analysis. Journal of Food Composition and Analysis 2008, 21 (8), 672-683.
15. Flamini, R.; Panighel, A., Mass spectrometry in grape and wine chemistry. Part II: The consumer protection. Mass Spectrometry Reviews 2006, 25 (5), 741-774.
16. World Health Organization, Guidelines for drinking-water quality. <http://www.who.int/water_sanitation_health>. 2006.
17. Biswas, S.; Talukder, G.; Sharma, A., Prevention of cytotoxic effects of arsenic by short-term dietary supplementation with selenium in mice in vivo. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 1999, 441 (1), 155-160.
18. Schrauzer, G. N., Selenium. Biological Trace Element Research 1992, 33 (1), 51-62.
19. Moreira, C. M.; Duarte, F. A.; Lebherz, J.; Pozebon, D.; Flores, E. M.; Dressler, V. L., Arsenic speciation in white wine by LC–ICP–MS. Food Chemistry 2011, 126 (3), 1406-1411.
20. Liu, Q., Determination of inorganic selenium species in commercial wine collected from the Beijing region, China. Chemical Speciation & Bioavailability 2010, 22 (2), 81-85.
21. Sánchez-Martínez, M.; da Silva, E. G. P.; Pérez-Corona, T.; Cámara, C.; Ferreira, S. L.; Madrid, Y., Selenite biotransformation during brewing. Evaluation by HPLC–ICP-MS. Talanta 2012, 88, 272-276.
22. Moens, L.; Vanhaecke, F.; Bandura, D.; Baranov, V.; Tanner, S., Elimination of isobaric interferences in ICP-MS, using ion–molecule reaction chemistry: Rb/Sr age determination of magmatic rocks, a case study. Journal of Analytical Atomic Spectrometry 2001, 16 (9), 991-994.
23. Tanner, S. D.; Baranov, V. I.; Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochimica Acta Part B: Atomic Spectroscopy 2002, 57 (9), 1361-1452.
24. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell. Journal of the American Society for Mass Spectrometry 2002, 13 (10), 1176-1185.
25. Wang, R. Y.; Hsu, Y. L.; Chang, L. F.; Jiang, S. J., Speciation analysis of arsenic and selenium compounds in environmental and biological samples by ion chromatography–inductively coupled plasma dynamic reaction cell mass spectrometer. Analytica Chimica Acta 2007, 590 (2), 239-244.
26. D’Ilio, S.; Violante, N.; Majorani, C.; Petrucci, F., Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: Still a challenge? A review. Analytica Chimica Acta 2011, 698 (1), 6-13.
27. Larsen, E. H.; Stürup, S., Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation. Journal of Analytical Atomic Spectrometry 1994, 9 (10), 1099-1105.
28. Hu, Z.; Hu, S.; Gao, S.; Liu, Y.; Lin, S., Volatile organic solvent-induced signal enhancements in inductively coupled plasma-mass spectrometry: a case study of methanol and acetone. Spectrochimica Acta Part B: Atomic Spectroscopy 2004, 59 (9), 1463-1470.
29. Huang, J. H.; Hu, K. N.; Ilgen, J.; Ilgen, G., Occurrence and stability of inorganic and organic arsenic species in wines, rice wines and beers from Central European market. Food Additives & Contaminants: Part A 2012, 29 (1), 85-93.
30. Schrauzer, G. N., Selenomethionine: a review of its nutritional significance, metabolism and toxicity. The Journal of Nutrition 2000, 130 (7), 1653-1656.
31. Alzate, A.; Cañas, B.; Pérez-Munguía, S.; Hernández-Mendoza, H.; Pérez-Conde, C.; Gutiérrez, A. M.; Cámara, C., Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS. Journal of Agricultural and Food Chemistry 2007, 55 (24), 9776-9783.
32. Alzate, A.; Fernández-Fernández, A.; Perez-Conde, M.; Gutiérrez, A.; Cámara, C., Comparison of biotransformation of inorganic selenium by Lactobacillus and Saccharomyces in lactic fermentation process of yogurt and kefir. Journal of Agricultural and Food Chemistry 2008, 56 (18), 8728-8736.
33. Hsieh, Y. J.; Jiang, S. J., Application of HPLC-ICP-MS and HPLC-ESI-MS procedures for arsenic speciation in seaweeds. Journal of Agricultural and Food Chemistry 2012, 60 (9), 2083-2089.
34. Pan, F.; Tyson, J. F.; Uden, P. C., Simultaneous speciation of arsenic and selenium in human urine by high-performance liquid chromatography inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2007, 22 (8), 931-937.
35. da Silva, E. G.; Mataveli, L. R. V.; Arruda, M. A. Z., Speciation analysis of selenium in plankton, Brazil nut and human urine samples by HPLC–ICP-MS. Talanta 2013, 110, 53-57.
36. Jäger, T.; Drexler, H.; Göen, T., Ion pairing and ion exchange chromatography coupled to ICP-MS to determine selenium species in human urine. Journal of Analytical Atomic Spectrometry 2013, 28 (9), 1402-1409.
37. Fang, G.; Lv, Q.; Liu, C.; Huo, M.; Wang, S., An ionic liquid improved HPLC-ICP-MS method for simultaneous determination of arsenic and selenium species in animal/plant-derived foodstuffs. Analytical Methods 2015, 7 (20), 8617-8625.
38. 廖書翎, 感應耦合電漿質譜儀於食品中多重微量元素分析與鉻、砷及硒物種形態分析之應用. 國立中山大學, 高雄市. 2011.
39. 賴珮珊, 感應耦合電漿質譜儀於水樣中砷與硒物種分析以及魚肉樣品中有機錫物種分析之應用. 國立中山大學, 高雄市. 2004.
第二章
1. Cava-Montesinos, P.; Cervera, M. L.; Pastor, A.; de la Guardia, M., Hydride generation atomic fluorescence spectrometric determination of ultratraces of selenium and tellurium in cow milk. Analytica Chimica Acta 2003, 481 (2), 291-300.
2. J. Glover, V. V., Tellurium, in: L. Friberg, G.F. Nordberg, V.B. Vouk (Eds.), Handbook on the Toxicology of Metals. Elsevier, Amsterdam 1979.
3. Merian, E.; Clarkson, T. W., Metals and Their Compounds in the Environment. VCH: 1991.
4. Yu, C.; Cai, Q.; Guo, Z. X.; Yang, Z.; Khoo, S. B., Speciation analysis of tellurium by solid-phase extraction in the presence of ammonium pyrrolidine dithiocarbamate and inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry 2003, 376 (2), 236-242.
5. Ha, J.; Sun, H. W.; Sun, J. M.; Zhang, D. Q.; Yang, L. L., Determination of tellurium in urine by hydride generation atomic absorption spectrometry with derivative signal processing. Analytica Chimica Acta 2001, 448 (1), 145-149.
6. Groth, D.; Stettler, L.; Mackay, G., Interactions of mercury, cadmium, selenium, tellurium, arsenic and beryllium. Effects and dose-response relationships of toxic metals. Edited by GF Nordberg. Elsevier, Amsterdam 1976, 527-543.
7. http://www4.tcgs.tc.edu.tw/lib/network/chemical.htm.
8. Chen, S.; Zhu, S.; Lu, D., Solidified floating organic drop microextraction for speciation of selenium and its distribution in selenium-rich tea leaves and tea infusion by electrothermal vapourisation inductively coupled plasma mass spectrometry. Food Chemistry 2015, 169, 156-161.
9. Reyes, M. M.; Cervera, M.; De la Guardia, M., Determination of total Sb, Se, Te, and Bi and evaluation of their inorganic species in garlic by hydride-generation–atomic-fluorescence spectrometry. Analytical and Bioanalytical Chemistry 2009, 394 (6), 1557-1562.
10. Ghasemi, E.; Najafi, N. M.; Raofie, F.; Ghassempour, A., Simultaneous speciation and preconcentration of ultra traces of inorganic tellurium and selenium in environmental samples by hollow fiber liquid phase microextraction prior to electrothermal atomic absorption spectroscopy determination. Journal of Hazardous Materials 2010, 181 (1), 491-496.
11. Ghasemi, E.; Najafi, N. M.; Seidi, S.; Raofie, F.; Ghassempour, A., Speciation and determination of trace inorganic tellurium in environmental samples by electrodeposition-electrothermal atomic absorption spectroscopy. Journal of Analytical Atomic Spectrometry 2009, 24 (10), 1446-1451.
12. Pedro, J.; Stripekis, J.; Bonivardi, A.; Tudino, M., Determination of tellurium at ultra-trace levels in drinking water by on-line solid phase extraction coupled to graphite furnace atomic absorption spectrometer. Spectrochimica Acta Part B: Atomic Spectroscopy 2008, 63 (1), 86-91.
13. Huang, C.; Hu, B., Speciation of inorganic tellurium from seawater by ICP‐MS following magnetic SPE separation and preconcentration. Journal of Separation Science 2008, 31 (4), 760-767.
14. Aggarwal, S. K.; Kinter, M.; Nicholson, J.; Herold, D. A., Determination of tellurium in urine by isotope dilution gas chromatography/mass spectrometry using (4-fluorophenyl) magnesium bromide as a derivatizing agent and a comparison with electrothermal atomic absorption spectrometry. Analytical Chemistry 1994, 66 (8), 1316-1322.
15. Guerin, T.; Astruc, M.; Batel, A.; Borsier, M., Multielemental speciation of As, Se, Sb and Te by HPLC-ICP-MS. Talanta 1997, 44 (12), 2201-2208.
16. Lindemann, T.; Prange, A.; Dannecker, W.; Neidhart, B., Stability studies of arsenic, selenium, antimony and tellurium species in water, urine, fish and soil extracts using HPLC/ICP-MS. Fresenius' Journal of Analytical Chemistry 2000, 368 (2-3), 214-220.
17. Ogra, Y.; Kobayashi, R.; Ishiwata, K.; Suzuki, K. T., Identification of urinary tellurium metabolite in rats administered sodium tellurite. Journal of Analytical Atomic Spectrometry 2007, 22 (2), 153-157.
18. Anan, Y.; Yoshida, M.; Hasegawa, S.; Katai, R.; Tokumoto, M.; Ouerdane, L.; Łobiński, R.; Ogra, Y., Speciation and identification of tellurium-containing metabolites in garlic, Allium sativum. Metallomics 2013, 5 (9), 1215-1224.
19. Casiot, C.; Donard, O. F.; Potin-Gautier, M., Optimization of the hyphenation between capillary zone electrophoresis and inductively coupled plasma mass spectrometry for the measurement of As-, Sb-, Se-and Te-species, applicable to soil extracts. Spectrochimica Acta Part B: Atomic Spectroscopy 2002, 57 (1), 173-187.
20. Prange, A.; Schaumlöffel, D., Determination of element species at trace levels using capillary electrophoresis-inductively coupled plasma sector field mass spectrometry. Journal of Analytical Atomic Spectrometry 1999, 14 (9), 1329-1332.
21. Kuo, C. Y.; Jiang, S. J., Determination of selenium and tellurium compounds in biological samples by ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry. Journal of Chromatography A 2008, 1181 (1), 60-66.
22. Viñas, P.; López‐García, I.; Merino‐Meroño, B.; Hernández‐Córdoba, M., Ion chromatography–hydride generation‐atomic fluorescence spectrometry speciation of tellurium. Applied Organometallic Chemistry 2005, 19 (8), 930-934.
23. Reyes, M. N.; Cervera, M. L.; Guardia, M. d. l., Determination of inorganic species of Sb and Te in cereals by hydride generation atomic fluorescence spectrometry. Journal of the Brazilian Chemical Society 2011, 22 (2), 197-203.
24. Körez, A.; Eroğlu, A. E.; Volkan, M.; Ataman, O. Y., Speciation and preconcentration of inorganic tellurium from waters using a mercaptosilica microcolumn and determination by hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 2000, 15 (12), 1599-1605.
25. Matos-Reyes, M.; Cervera, M.; Campos, R.; De la Guardia, M., Total content of As, Sb, Se, Te and Bi in Spanish vegetables, cereals and pulses and estimation of the contribution of these foods to the Mediterranean daily intake of trace elements. Food Chemistry 2010, 122 (1), 188-194.
26. Cava-Montesinos, P.; de la Guardia, A.; Teutsch, C.; Cervera, M. L.; de la Guardia, M., Speciation of selenium and tellurium in milk by hydride generation atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry 2004, 19 (5), 696-699.
27. Ródenas-Torralba, E.; Morales-Rubio, Á.; de la Guardia, M., Multicommutation hydride generation atomic fluorescence determination of inorganic tellurium species in milk. Food Chemistry 2005, 91 (1), 181-189.
28. Gundersen, V.; Bechmann, I. E.; Behrens, A.; Stürup, S., Comparative investigation of concentrations of major and trace elements in organic and conventional Danish agricultural crops. 1. Onions (Allium c epa Hysam) and Peas (Pisum s ativum Ping Pong). Journal of Agricultural and Food Chemistry 2000, 48 (12), 6094-6102.
29. Kaplan, M. M.; Cerutti, S.; Salonia, J. A.; Gásquez, J. A.; Martinez, L. D., Preconcentration and determination of tellurium in garlic samples by hydride generation atomic absorption spectrometry. Journal of AOAC International 2005, 88 (4), 1242-1246.
30. Matos Reyes, M.; Cervera, M.; De la Guardia, M., Determination of total Sb, Se, Te, and Bi and evaluation of their inorganic species in garlic by hydride-generation–atomic-fluorescence spectrometry. Analytical and Bioanalytical Chemistry 2009, 394 (6), 1557-1562.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code