Responsive image
博碩士論文 etd-0619117-103358 詳細資訊
Title page for etd-0619117-103358
論文名稱
Title
一、雲點萃取法結合電熱式揮發感應耦合電漿質譜儀於水樣中銀奈米粒子分析之應用 二、電熱式揮發感應耦合電漿質譜儀於眼影樣品中鉻、砷、鎘、銻、汞和鉛元素分析之應用
1. Cloud point extraction combined with ETV-ICP-MS for silver nanoparticles determination in water samples 2. Determination of Cr, As, Cd, Sb, Hg and Pb in eyeshadows by ETV-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-18
繳交日期
Date of Submission
2017-07-19
關鍵字
Keywords
感應耦合電漿質譜儀、眼影、銀奈米粒子、雲點萃取法、電熱式揮發
silver nanoparticles, cloud point extraction, eyeshadow, ETV, ICP-MS
統計
Statistics
本論文已被瀏覽 5697 次,被下載 115
The thesis/dissertation has been browsed 5697 times, has been downloaded 115 times.
中文摘要
第一篇研究為利用雲點萃取法結合電熱式揮發感應耦合電漿質譜儀於水樣中分析銀奈米粒子。實驗中利用雲點萃取法 ( Cloud point extraction,CPE ) 作為前處理方法,萃取及預濃縮銀奈米粒子 ( Silver nanoparticles,AgNPs ),再利用泥漿取樣法結合電熱式揮發樣品進樣系統,來對微胞相的樣品進行取樣。本實驗是在水樣中先加入腐植酸 ( Humic acid ) 來防止銀奈米粒子在前處理過程中溶解,接著加入硫代硫酸鈉與銀離子形成水溶性錯合物,再加入界面活性劑Triton X-114進行萃取,AgNPs會因為疏水性進入微胞相中,當加熱至雲點溫度 ( Cloud point temperature ) 時,會產生相分離的現象,可有效將銀離子分離,且具有濃縮的優點。實驗中藉由微波來輔助雲點萃取,以提升萃取效率,縮短萃取時間。實驗結果中雲點萃取法之最適化為添加100 mg L-1腐植酸、0.25% m/v Na2S2O3和0.4% m/v Triton X-114,再加入HNO3將pH值調至2.0,於40℃進行微波輔助萃取20分鐘。搭配ETV樣品需求量少的優點,直接對萃取後的微胞相進行分析,以減少對微胞相的稀釋,另外實驗中也針對影響分析物揮發訊號之因素進行探討,包含修飾劑的添加、ETV的裂解溫度及揮發溫度等。最後使用基質匹配校正曲線法對RO水、自來水和澄清湖湖水樣品進行定量分析,此方法對銀奈米粒子的偵測極限為具有0.002 μg L-1。
第二篇研究為利用電熱式揮發感應耦合電漿質譜儀對眼影中鉻、砷、鎘、銻、汞和鉛元素分析之應用。實驗在動態反應室 ( Dynamic reaction cell,DRC ) 系統下進行,選擇氧氣作為反應氣體來減輕樣品與石墨爐中碳原子對分析物所造成的光譜干擾,由實驗結果發現以1.0% m/v Thioacetamide ( TAA ) 作為修飾劑有助於提升分析物訊號,經最適化探討後,乳濁狀眼影樣品濃度除了分析鉛元素時配製0.1% m/v外,其餘分析物則以1.0% m/v乳濁狀樣品進行定量,裂解溫度與揮發溫度分別設定為250℃和1600℃,並在實驗中探討是否有其他干擾物對分析物造成光譜干擾。最後,將本系統運用於市售眼影樣品之定量分析上,由於眼影無標準參考樣品,因此以乳霜標準參考樣品GBW09305來驗證本方法之準確性。實驗中分別使用標準添加法與同位素稀釋法進行定量分析,同時與消化後以傳統式霧化器所得結果相互比較,證明此方法之可行性。此方法對於鉻、砷、鎘、銻、汞和鉛元素偵測極限分別為0.023、0.004、0.003、0.006、0.001和0.021 μg L -1。
Abstract
The first research focused on, cloud point extraction (CPE) combined with ETV-ICP-MS analysis to determine the silver nanoparticles (AgNPs) in water samples was studied in detail. The CPE techniques were utilized to extract and pre-concentrate AgNPs. Ultrasonic slurry sampling was used to combine with the electrothermal vaporization (ETV) for sampling the micelles. However, humic acid was added to prevent the dissolution of AgNPs, followed by the addition of Na2S2O3 with Ag ions to form hydrophilic complexes. Moreover, AgNPs in the presence of Triton X-114 were extracted into micelles due to hydrophobic nature. After heating to cloud point temperature, the phase separation was occurred. In our study, microwave assisted extraction techniques (MAE) were used to improve the extraction efficiency and shorten the incubation time. The optimum conditions for the CPE were to add 100 mg L-1 humic acid, 0.25% m/v Na2S2O3 and 0.4% m/v Triton X-114, and then add HNO3 to adjust the pH to 2.0. MAE was carried out at 40℃ for 20 minutes. With the advantages of small sample volume of ETV techniques, the extracted micelles were analyzed directly to reduce the dilution of the micelles. In addition to that, we explored various factors that affect the vaporizable signal of the analyte including modifier, pyrolysis temperature and vaporization temperature. Matrix-matched calibration curve was used to determinate the AgNPs in RO water, tap water and Chengcing lake water, and the detection limit of AgNPs was 0.002 μg L-1.
The second research focused on, determination of Cr, As, Cd, Sb, Hg and Pb in eyeshadow samples by ETV-ICP-MS techniques was studied in detail. In the experiment methodology was carried out under dynamic reaction cell system (DRC), with reaction gas (oxygen) was chosen to mitigate the spectral interference. The results found that 1.0% m/v thioacetamide (TAA) as a modifier to enhance the signal of the analyte. To determinate Pb, the concentration of eyeshadow samples was employed 0.1% m/v, and the concentration of eyeshadow samples was 1.0% m/v for the remaining analytes. In addition, the pyrolysis temperature of vaporization temperature were optimized at 250℃ and 1600℃ respectively. Moreover, there is no spectral interference to the analyte which we confirmed very well manner. Finally, the system was applied to determine the Cr, As, Cd, Sb, Hg and Pb in commercial eyeshadow samples. Since, there is no standard reference material (SRM) for eyeshadow samples. However, here we performed cream standard reference material GBW09305 to measure the accuracy of this method. In addition to that we explored, the standard addition method and isotope dilution method were used to determinate analytes, and compared with the results obtained by the traditional atomizer after microwave digestion to prove the feasibility of this method. The detection limit of this method Cr, As, Cd, Sb, Hg and Pb was found to be 0.023, 0.004, 0.003, 0.006, 0.001 and 0.021 μg L-1, respectively.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 xi
第一章 雲點萃取法結合電熱式揮發感應耦合電漿質譜儀於水樣中的銀奈米粒子分析之應用
壹、 前言 1
一、 研究背景 1
二、 雲點萃取法簡介 2
三、 微波輔助萃取簡介 5
四、 超音波泥漿取樣法結合電熱式揮發樣品輸入系統簡介 5
貳、 實驗部分 8
一、 儀器裝置及操作條件 8
二、 試劑藥品及溶液的配製 12
參、 實驗過程 14
一、 雲點萃取條件之最適化 14
二、 ETV條件之最適化 18
三、 校正曲線 21
四、 樣品製備與分析 21
肆、 結果與討論 23
一、 雲點萃取條件之最適化 23
二、 ETV條件之最適化 35
三、 校正曲線 41
四、 真實樣品之測定 47
伍、 結論 52
陸、 參考文獻 53
第二章 電熱式揮發感應耦合電漿質譜儀於眼影樣品中鉻、砷、鎘、銻、汞和鉛元素分析之應用
壹、 前言 59
一、 研究背景 59
二、 動態反應室簡介 61
三、 鉻、砷、鎘、銻、汞和鉛之個論 62
四、 同位素稀釋法簡介 63
貳、 實驗部分 65
一、 儀器裝置及操作條件 65
二、 試劑藥品及溶液的配製 65
參、 實驗過程 71
一、 ETV條件之最適化 71
二、 樣品稀釋倍數之探討 73
三、 DRC系統之最適化 74
四、 ETV系統之裂解溫度和揮發溫度的選擇 75
五、 光譜 ( 同質量 ) 干擾 75
六、 校正曲線 76
七、 樣品製備與分析 76
肆、 結果與討論 80
一、 ETV條件之最適化 80
二、 樣品稀釋倍數之探討 85
三、 DRC系統之最適化 85
四、 ETV系統之裂解溫度和揮發溫度的選擇 88
五、 光譜 ( 同質量 ) 干擾 95
六、 校正曲線 95
七、 真實樣品之測定 100
伍、 結論 106
陸、 參考文獻 107
參考文獻 References
1. Ray, P. C.; Yu, H.; Fu, P. P., Toxicity and environmental risks of nanomaterials: challenges and future needs. Journal of Environmental Science and Health Part C 2009, 27 (1), 1-35.
2. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J., The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16 (10), 2346.
3. Kittler, S.; Greulich, C.; Diendorf, J.; Koller, M.; Epple, M., Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chemistry of Materials 2010, 22 (16), 4548-4554.
4. Bar‐Ilan, O.; Albrecht, R. M.; Fako, V. E.; Furgeson, D. Y., Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 2009, 5 (16), 1897-1910.
5. Braydich-Stolle, L.; Hussain, S.; Schlager, J. J.; Hofmann, M.-C., In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences 2005, 88 (2), 412-419.
6. Quadros, M. E.; Marr, L. C., Environmental and human health risks of aerosolized silver nanoparticles. Journal of the Air & Waste Management Association 2010, 60 (7), 770-781.
7. Ratte, H. T., Bioaccumulation and toxicity of silver compounds: a review. Environmental Toxicology and Chemistry 1999, 18 (1), 89-108.
8. Mitrano, D. M.; Barber, A.; Bednar, A.; Westerhoff, P.; Higgins, C. P.; Ranville, J. F., Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). Journal of Analytical Atomic Spectrometry 2012, 27 (7), 1131-1142.
9. Loeschner, K.; Navratilova, J.; Købler, C.; Mølhave, K.; Wagner, S.; von der Kammer, F.; Larsen, E. H., Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Analytical and Bioanalytical Chemistry 2013, 405 (25), 8185-8195.
10. Hagendorfer, H.; Kaegi, R.; Parlinska, M.; Sinnet, B.; Ludwig, C.; Ulrich, A., Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach–a comparison to transmission electron microscopy and batch dynamic light scattering. Analytical Chemistry 2012, 84 (6), 2678-2685.
11. Zhou, X. X.; Liu, J. F.; Geng, F. L., Determination of metal oxide nanoparticles and their ionic counterparts in environmental waters by size exclusion chromatography coupled to ICP-MS. NanoImpact 2016, 1, 13-20.
12. Liu, F. K., SEC characterization of Au nanoparticles prepared through seed-assisted synthesis. Chromatographia 2007, 66 (9-10), 791-796.
13. Qu, H.; Mudalige, T. K.; Linder, S. W., Capillary electrophoresis/inductively-coupled plasma-mass spectrometry: development and optimization of a high resolution analytical tool for the size-based characterization of nanomaterials in dietary supplements. Analytical Chemistry 2014, 86 (23), 11620-11627.
14. Qu, H.; Mudalige, T. K.; Linder, S. W., Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles. Journal of Chromatography A 2016, 1429, 348-353.
15. Zhou, X. X.; Liu, R.; Liu, J. F., Rapid chromatographic separation of dissoluble Ag (I) and silver-containing nanoparticles of 1–100 nanometer in antibacterial products and environmental waters. Environmental Science & Technology 2014, 48 (24), 14516-14524.
16. Mitrano, D. M.; Lesher, E. K.; Bednar, A.; Monserud, J.; Higgins, C. P.; Ranville, J. F., Detecting nanoparticulate silver using single‐particle inductively coupled plasma–mass spectrometry. Environmental Toxicology and Chemistry 2012, 31 (1), 115-121.
17. Tuoriniemi, J.; Cornelis, G.; Hassellöv, M., Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Analytical Chemistry 2012, 84 (9), 3965-3972.
18. Yang, Y.; Long, C. L.; Li, H. P.; Wang, Q.; Yang, Z. G., Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry. Science of The Total Environment 2016, 563, 996-1007.
19. Richter, J.; Fettig, I.; Philipp, R.; Jakubowski, N.; Panne, U.; Fisicaro, P.; Alasonati, E., Determination of tributyltin in whole water matrices under the European Water Framework Directive. Journal of Chromatography A 2016, 1459, 112-119.
20. Praveen, R.; Daniel, S.; Rao, T. P., Solid phase extraction preconcentration of cobalt and nickel with 5, 7-dichloroquinone-8-ol embedded styrene–ethylene glycol dimethacrylate polymer particles and determination by flame atomic absorption spectrometry (FAAS). Talanta 2005, 66 (2), 513-520.
21. Li, P.; Chen, Y. J.; Hu, X.; Lian, H. Z., Magnetic solid phase extraction for the determination of trace antimony species in water by inductively coupled plasma mass spectrometry. Talanta 2015, 134, 292-297.
22. Chao, J. B.; Liu, J. F.; Yu, S. J.; Feng, Y. D.; Tan, Z. Q.; Liu, R.; Yin, Y. G., Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation. Analytical chemistry 2011, 83 (17), 6875-6882.
23. López-García, I.; Vicente-Martínez, Y.; Hernández-Córdoba, M., Speciation of silver nanoparticles and Ag (I) species using cloud point extraction followed by electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2014, 101, 93-97.
24. Liu, J. F.; Chao, J. B.; Liu, R.; Tan, Z. Q.; Yin, Y. G.; Wu, Y.; Jiang, G. B., Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters. Analytical Chemistry 2009, 81 (15), 6496-6502.
25. Mudalige, T. K.; Qu, H.; Linder, S. W., Asymmetric flow-field flow fractionation hyphenated ICP-MS as an alternative to cloud point extraction for quantification of silver nanoparticles and silver speciation: Application for nanoparticles with a protein corona. Analytical Chemistry 2015, 87 (14), 7395-7401.
26. Yang, Y.; Reed, R.; Schoepf, J.; Hristovski, K.; Herckes, P.; Westerhoff, P., Prospecting nanomaterials in aqueous environments by cloud-point extraction coupled with transmission electron microscopy. Science of the Total Environment 2017, 584, 515-522.
27. Watanabe, H.; Tanaka, H., A non-ionic surfactant as a new solvent for liquid—liquid extraction of zinc (II) with 1-(2-pyridylazo)-2-naphthol. Talanta 1978, 25 (10), 585-589.
28. Rangel-Yagui, C.; Pessoa-Jr, A.; Blankschtein, D., Two-phase aqueous micellar systems: an alternative method for protein purification. Brazilian Journal of Chemical Engineering 2004, 21 (4), 531-544.
29. Yang, Y.; Luo, L.; Li, H. P.; Wang, Q.; Yang, Z. G.; Long, C. L., Separation and determination of silver nanoparticle in environmental water and the UV-induced photochemical transformations study of AgNPs by cloud point extraction combined ICP-MS. Talanta 2016, 161, 342-349.
30. Simitchiev, K.; Stefanova, V.; Kmetov, V.; Andreev, G.; Kovachev, N.; Canals, A., Microwave-assisted cloud point extraction of Rh, Pd and Pt with 2-mercaptobenzothiazole as preconcentration procedure prior to ICP-MS analysis of pharmaceutical products. Journal of Analytical Atomic Spectrometry 2008, 23 (5), 717-726.
31. Suoranta, T.; Zugazua, O.; Niemelä, M.; Perämäki, P., Recovery of palladium, platinum, rhodium and ruthenium from catalyst materials using microwave-assisted leaching and cloud point extraction. Hydrometallurgy 2015, 154, 56-62.
32. Tang, X.; Zhu, D.; Huai, W.; Zhang, W.; Fu, C.; Xie, X.; Quan, S.; Fan, H., Simultaneous extraction and separation of flavonoids and alkaloids from Crotalaria sessiliflora L. by microwave-assisted cloud-point extraction. Separation and Purification Technology 2017, 175, 266-273.
33. Zhang, Y.; Mao, X.; Liu, J.; Wang, M.; Qian, Y.; Gao, C.; Qi, Y., Direct determination of cadmium in foods by solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry using a tungsten coil trap. Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 118, 119-126.
34. Chen, S.; Li, J.; Lu, D.; Zhang, Y., Dual extraction based on solid phase extraction and solidified floating organic drop microextraction for speciation of arsenic and its distribution in tea leaves and tea infusion by electrothermal vaporization ICP-MS. Food Chemistry 2016, 211, 741-747.
35. Elzey, S.; Grassian, V. H., Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. Journal of Nanoparticle Research 2010, 12 (5), 1945-1958.
36. Nilsson, P. G.; Wennerstroem, H.; Lindman, B., Structure of micellar solutions of nonionic surfactants. Nuclear magnetic resonance self-diffusion and proton relaxation studies of poly (ethylene oxide) alkyl ethers. The Journal of Physical Chemistry 1983, 87 (8), 1377-1385.
37. Roman, M.; Rigo, C.; Munivrana, I.; Vindigni, V.; Azzena, B.; Barbante, C.; Fenzi, F.; Guerriero, P.; Cairns, W. R., Development and application of methods for the determination of silver in polymeric dressings used for the care of burns. Talanta 2013, 115, 94-103.
38. Hadioui, M.; Leclerc, S.; Wilkinson, K. J., Multimethod quantification of Ag+ release from nanosilver. Talanta 2013, 105, 15-19.
39. Yamada, E.; Ozaki, T.; Kimura, M., Determination and behavior of humic substances as precursors of trihalomethane in environmental water. Analytical Sciences 1998, 14 (2), 327-332.
40. Aramendía, M.; Resano, M.; Vanhaecke, F., Determination of toxic trace impurities in titanium dioxide by solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2009, 24 (1), 41-50.
41. Silva, A.; Welz, B.; de Loos-Vollebregt, M., Evaluation of pyrolysis curves for volatile elements in aqueous standards and carbon-containing matrices in electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2008, 63 (7), 755-762.
42. Wu, Y.; Hu, B.; Jiang, Z.; Chen, S., Low temperature vaporization for ICP-AES determination of palladium in geological samples using sample introduction of gaseous palladium oxinate. Journal of Analytical Atomic Spectrometry 2002, 17 (2), 121-124.
43. Volynsky, A.; de Loos-Vollebregt, M., Vaporization of Pb, As and Ga alone and in the presence of Pd modifier studied by electrothermal vaporization-inductively coupled mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2005, 60 (11), 1432-1441.
44. Pinto, F. G.; Lepri, F. G.; Saint'Pierre, T. D.; da Silva, J. B. B.; Costa, L. M.; Curtius, A. J., Direct determination of Dy, Sm, Eu, Tm, and Yb in geological samples by slurry electrothermal vaporization inductively coupled plasma mass spectrometry. Analytical Letters 2010, 43 (6), 949-959.
45. Zhang, Y.; Hu, B., Determination of some refractory elements and Pb by fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry with platform and wall vaporization. Spectrochimica Acta Part B: Atomic Spectroscopy 2011, 66 (2), 163-169.
46. Wu, S.; Hu, C.; He, M.; Chen, B.; Hu, B., Capillary microextraction combined with fluorinating assisted electrothermal vaporization inductively coupled plasma optical emission spectrometry for the determination of trace lanthanum, europium, dysprosium and yttrium in human hair. Talanta 2013, 115, 342-348.
47. Detcheva, A.; Hassler, J.; Georgieva, R., Feasibility of ETV-ICP-OES for characterization of archaeological glasses. Analytical Letters 2012, 45 (5-6), 603-612.
48. Peschel, B. U.; Herdering, W.; Broekaert, J. A., A radiotracer study on the volatilization and transport effects of thermochemical reagents used in the analysis of alumina powders by slurry electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2007, 62 (2), 109-115.
49. Lin, M. L.; Jiang, S. J., Determination of trace Cr, Mo, Pd, Cd, Pt and Pb in drug tablets by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2011, 26 (9), 1813-1818.
50. Gunsolus, I. L.; Mousavi, M. P.; Hussein, K.; Bühlmann, P.; Haynes, C. L., Effects of humic and fulvic acids on silver nanoparticle stability, dissolution, and toxicity. Environmental Science & Technology 2015, 49 (13), 8078-8086.
1. Cha, N. R.; Lee, J. K.; Lee, Y. R.; Jeong, H. J.; Kim, H. K.; Lee, S. Y., Determination of iron, copper, zinc, lead, nickel and cadmium in cosmetic matrices by flame atomic absorption spectroscopy. Analytical Letters 2010, 43 (2), 259-268.
2. Soares, A. R.; Nascentes, C. C., Development of a simple method for the determination of lead in lipstick using alkaline solubilization and graphite furnace atomic absorption spectrometry. Talanta 2013, 105, 272-277.
3. Peregrino, C. P.; Moreno, M. V.; Miranda, S. V.; Rubio, A. D.; Leal, L. O., Mercury levels in locally manufactured Mexican skin-lightening creams. International journal of environmental research and public health 2011, 8 (6), 2516-2523.
4. ALqadami, A. A.; Abdalla, M. A.; ALOthman, Z. A.; Omer, K., Application of solid phase extraction on multiwalled carbon nanotubes of some heavy metal ions to analysis of skin whitening cosmetics using ICP-AES. International journal of environmental research and public health 2013, 10 (1), 361-374.
5. Al-Qutob, M. A.; Alatrash, H. M.; Abol-Ola, S., Determination of different heavy metals concentrations in cosmetics purchased from the Palestinian markets by ICP/MS. Advances in Environmental Sciences 2013, 5 (3).
6. Gao, Y.; Shi, Z.; Zong, Q.; Wu, P.; Su, J.; Liu, R., Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry after dissolution with formic acid. Analytica chimica acta 2014, 812, 6-11.
7. Chen, W. N.; Jiang, S. J.; Chen, Y. L.; Sahayam, A., Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions. Analytica chimica acta 2015, 860, 8-14.
8. Li, Y. T.; Jiang, S. J.; Chen, Y. L.; Sahayam, A., Multi-element analysis of sunscreens using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2014, 29 (11), 2176-2182.
9. Katz, S. A.; Salem, H., The toxicology of chromium with respect to its chemical speciation: a review. Journal of Applied Toxicology 1993, 13 (3), 217-224.
10. Wolf, R. E.; Morrison, J. M.; Goldhaber, M. B., Simultaneous determination of Cr (III) and Cr (VI) using reversed-phased ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2007, 22 (9), 1051-1060.
11. Markiewicz, B.; Komorowicz, I.; Sajnóg, A.; Belter, M.; Barałkiewicz, D., Chromium and its speciation in water samples by HPLC/ICP-MS–technique establishing metrological traceability: a review since 2000. Talanta 2015, 132, 814-828.
12. 行政院衛生福利部食品藥物管理署 "化粧品中禁止使用成分總表" 94 年4 月21 日衛署藥字第0940306865 號公告增列.
13. 行政院衛生福利部食品藥物管理署 "化粧品中含不純物重金屬鉛、砷之殘留限量規定" 103 年1 月8 日衛署藥字第1021650418號公告.
14. Division of Toxicology and Environmental Medicine, Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services. Detailed data table for the 2011 priority list of hazardous substances that will be the subject of toxicological profiles.
15. 行政院衛生福利部食品藥物管理署 "化粧品衛生管理條例暨相關法規彙編" 99 年 6月.
16. Sun, Q.; Yuan, D.; Chen, Z.; Megharaj, M.; Naidu, R., Reduction of polyatomic interferences during ion-chromatographic speciation of metal ions via their EDTA complexes along with ICP-MS detection using an octopole reaction system. Microchimica Acta 2010, 169 (1-2), 41-47.
17. Quiroz, W.; Arias, H.; Bravo, M.; Pinto, M.; Lobos, M. G.; Cortés, M., Development of analytical method for determination of Sb (V), Sb (III) and TMSb (V) in occupationally exposed human urine samples by HPLC–HG-AFS. Microchemical Journal 2011, 97 (1), 78-84.
18. Tsai, S. J. J.; Chang, L. L.; Chang, S. I., Silver and lanthanum as effective modifiers in trace determination of cadmium in nickel-base alloys by electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 1997, 52 (1), 55-65.
19. Bulska, E.; Jędral, W., Application of palladium-and rhodium-plating of the graphite furnace in electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 1995, 10 (1), 49-53.
20. Volynsky, A.; Tikhomirov, S.; Elagin, A., Proposed mechanism for the action of palladium and nickel modifiers in electrothermal atomic absorption spectrometry. Analyst 1991, 116 (2), 145-148.
21. Narukawa, T., Separation and determination of tellurium (IV) and-(VI) by electrothermal atomic absorption spectrometry using a tungsten furnace after collection as the 3-phenyl-5-mercapto-1, 3, 4-thiadiazole-2 (3H)-thione-tellurium complex on cobalt (III) oxide. Journal of Analytical Atomic Spectrometry 1999, 14 (1), 75-80.
22. Vinas, P.; Campillo, N.; López-Garcıa, I.; Hernández-Córdoba, M., Electrothermal atomic absorption spectrometric determination of molybdenum, aluminium, chromium and manganese in milk. Analytica chimica acta 1997, 356 (2), 267-276.
23. Fernández-Pérez, V.; García-Ayuso, L.; de Castro, M. L., Focused microwave Soxhlet device for rapid extraction of mercury, arsenic and selenium from coal prior to atomic fluorescence detection. Analyst 2000, 125 (2), 317-322.
24. Chang, Y. L.; Jiang, S. J., Determination of chromium in water and urine by reaction cell inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2001, 16 (12), 1434-1438.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code