Responsive image
博碩士論文 etd-0619117-112303 詳細資訊
Title page for etd-0619117-112303
論文名稱
Title
一、液相層析結合感應耦合電漿質譜儀於菸草中微量毒性元素分析及鉈物種分析之應用 二、流動式注入化學蒸氣技術結合感應耦合電漿質譜儀於眼影中微量元素分析之應用
1. Determination of trace elements and thallium speciation analysis in tobacco using ICP-MS and HPLC-ICP-MS 2. Determination of trace elements in eyeshadow using FI-CVG-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-18
繳交日期
Date of Submission
2017-07-19
關鍵字
Keywords
感應耦合電漿質譜儀、逆相層析法、化學蒸氣生成法、菸草、眼影
Reverse phase liquid chromatographic, ICP-MS, Vapor generation, tobacco, eyeshadow
統計
Statistics
本論文已被瀏覽 5725 次,被下載 59
The thesis/dissertation has been browsed 5725 times, has been downloaded 59 times.
中文摘要
第一部分研究採用離子對逆相層析法(Ion pair reverse phase chromatography)結合感應耦合電漿質譜儀針對菸草及菸灰樣品中的鉈(Tl)進行物種分析。實驗中先以動態反應槽結合感應耦合電漿質譜儀得知菸草及菸灰中鉻、鎳、砷、鎘、鉈及鉛的濃度。層析系統為使用C8管柱,並以Tetra-n-butylammonium phosphate (TBAP)作為離子對試劑;Diethylenetriamine -pentaacetic acid (DTPA)做為螯合試劑。經條件最適化探討後,動相最適化條件組成為7 mM TBAP、6 mM DTPA、2%(v/v)甲醇,pH值5,流速1.0 mL min-1,可於2分鐘內快速分離Tl(I)及Tl(III)。此條件下獲得Tl(I)及Tl(III)的偵測極限皆低至3 ng L-1,層析峰面積再現性RSD值為1% ( n = 5 )。菸草樣品則為選擇台灣、日本、美國三種產地之菸草,使用100 mM醋酸銨、5 mM DTPA為萃取試劑,以超音波振盪20分鐘,為一簡單、快速及價格不高的萃取方法,其萃取效率達98%以上。同時也針對台灣產地香菸之菸灰進行萃取,使用100 mM醋酸銨、5 mM DTPA菸草萃取試劑加上2%(v/v) HF,以超音波振盪20分鐘,其萃取效率介於94-105%。結果得知菸草樣品中皆為毒性較高的Tl(I);菸灰樣品中同時存在Tl(I)及Tl(III),菸草樣品添加回收率介於90-98%範圍之間,證明本研究方法的準確性及可行性。
第二部分研究利用泥漿進樣結合流動注入化學蒸氣生成技術結合感應耦合電漿質譜儀分析眼影中砷、鎘、銻、汞及鉛之含量。為得到最佳分析物訊號之靈敏度,實驗中依序對增益試劑thiourea濃度、Co濃度、HCl濃度、NaBH4濃度、反應試劑流速、混合線圈體積做最適化探討。實驗中比較水溶液校正法(External calibration﹚及標準添加法(Standard addition﹚之斜率,結果顯示基質會影響氫化物生成效率,故最後選擇標準添加法進行分析物之定量,並搭配同位素稀釋法驗證此方法。本研究所得砷、鎘、銻、汞及鉛之方法偵測極限分別為0.01、0.09、0.01、0.03、0.6 ng mL-1。由於眼影沒有標準參考樣品,因此採用乳霜標準參考樣品GBW 09305來驗證本研究方法之準確性。最後將以本研究方法分析三種不同顏色之市售眼影樣品,且同時比較使用同位素稀釋法、微波消化方法及ETV-ICP-MS所定量之結果來驗證方法準確性及可行性。
Abstract
First part of research focused on an inductively coupled plasma mass spectrometry (ICP-MS) was used an ion pair reverse phase liquid chromatographic detector for the speciation analysis of thallium in tobacco samples. At first, the concentration of Cr, Ni, As, Cd, Tl, Pb was found by DRC-ICP-MS. An C8-HPLC column was used as the stationary phase; in addition to that, Tetra-n-butyl ammonium phosphate (TBAP) was used as an ion pair reagent followed by Diethylenetriamine-pentaacetic acid (DTPA) was used as a chelating reagent. The optimization conditions, were applied to 7 mmol L-1 TBAP, 6 mmol L-1 DTPA in 2% v/v methamol solution (pH=5) was used as a mobile phase, the separation was completed in less than 2 min and the detection limit was found to be 3 ng L-1 for both Tl(I) and Tl(III) compounds based on peak height. The relative standard deviation (RSD) of the peak areas for five injections (n=5) of a mixture containing Tl (1μg L-1) which showed better performance. Three kinds Tobacco samples were collected in various countries (Taiwan, Japan, USA) which was analyzed quantitatively for thallium species determination an optimized conditions as follows: tobacco with a 5 mmol L-1 of DTPA in 100 mmol L-1 ammonium acetate solution with ultrasonic bath in 20 min durations. This method was very simple, fast, cost effective and the extraction efficiency was better than 98%. In addition to improve the extraction efficiency furthermore we have enhanced with 5 mmol L-1 DTPA in 2% v/v hydrofluoric acid and 100 mmol L-1 ammonium acetate solution by ultrasonic bath in 20 min durations. The results which are shows that tobacco samples existed highly toxic Tl(I) species, and tobacco ash sample existed Tl (I)/(III) species. The spike recovery was achieved in 90-98% in order to prove the accuracy and feasibility of this method.
Second part of research methodology focused on, a slurry sampling with ICP-MS techniques to determine various elements such as As, Cd, Sb, Hg and Pb in eyeshadow commercial cosmetics sample using flow injection (FI) with vapor generation (VG) sample system. In the experiment, the concentration of thiourea, Co, HCl, NaBH4, reagent flow rate and mixing coil volume were optimized. The current study focused on, slope of external calibration and standard addition would be compared. The matrix of analyte could affect the hydride generation efficiency, so that the standard addition was chosen and detection limit was obtained from the curve in the range of 0.01-0.6 ng mL-1 for As, Cd, Sb, Hg and Pb. Since the eyeshadow didn’t have a standard reference material, the cream standard reference material GBW 09305 was used to verify the accuracy. Finally, three kinds of commercially available eyeshadow samples were analyzed by CVG-ICP-MS. At the same time, in order to prove the accuracy and feasibility of this method was verified by the isotope dilution/microwave digestion method with ETV-ICP-MS techniques.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第一章 液相層析結合感應耦合電漿質譜儀於菸草中微量毒性元素分析及鉈物種分析之應用
壹、 前言 1
一、 研究背景 1
二、 鉈元素之個論 1
三、 動態反應槽 3
貳、 實驗部分 5
一、 儀器裝置 5
二、 試劑藥品與溶液配製 7
參、 實驗過程 10
一、 液相層析分離條件探討 10
二、 再現性 11
三、 校正曲線、偵測極限的估計 11
四、 真實樣品分析 11
肆、 結果與討論 15
一、 ICP-MS於菸草及菸灰樣品鉻、鎳、砷、鎘、鉈及鉛定量分析 15
二、 液相層析條件最適化探討 18
三、 鉈物種的分析 24
四、 萃取條件 29
五、 HPLC-ICP-MS於真實樣品的分析 32
伍、 結論 42
陸、 參考文獻 43
第二章 流動式注入化學蒸氣技術結合感應耦合電漿質譜儀於眼影中微量元素分析之應用
壹、 前言 47
一、 研究背景 47
二、 金屬的毒性及對人體的危害 49
三、 流動注入法原理 50
四、 化學蒸氣生成法 51
五、 同位素稀釋法 54
貳、 實驗部分 56
一、 儀器裝置 56
二、 試劑藥品及溶液配製 58
參、 實驗過程 62
一、 化學蒸氣生成系統各參數之探討 62
二、 ICP-MS系統操作條件之探討 64
三、 樣品稀釋倍數之探討 64
四、 分析訊號之再現性 65
五、 光譜干擾探討 65
六、 校正曲線及偵測極限估計 67
七、 樣品前處理與分析 67
肆、 結果與討論 70
一、 化學蒸氣生成系統各參數之探討 70
二、 ICP-MS系統操作條件之探討 80
三、 樣品稀釋倍數之探討 80
四、 分析訊號之再現性 80
五、 光譜干擾探討 84
六、 校正曲線及偵測極限估計 84
七、 樣品前處理與分析 87
伍、 結論 95
陸、 參考文獻 96
參考文獻 References
第一部分
1. Organization, W. H., WHO report on the global tobacco epidemic: the MPOWER package. World Health Organization: 2008.
2. Organization, W. H., WHO report on the global tobacco epidemic, 2009: implementing smoke-free environments. World Health Organization: 2009.
3. Lazarevic, K.; Nikolic, D.; Stosic, L.; Milutinovic, S.; Videnovic, J.; Bogdanovic, D., Determination of lead and arsenic in tobacco and cigarettes: an important issue of public health. Central European journal of public health 2012, 20 (1), 62.
4. Kuo, C.-Y.; Wong, R.-H.; Lin, J.-Y.; Lai, J.-C.; Lee, H., Accumulation of chromium and nickel metals in lung tumors from lung cancer patients in Taiwan. Journal of Toxicology and Environmental Health, Part A 2006, 69 (14), 1337-1344.
5. Khlifi, R.; Hamza-Chaffai, A., Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: a review. Toxicology and Applied Pharmacology 2010, 248 (2), 71-88.
6. Adams, S. V.; Passarelli, M. N.; Newcomb, P. A., Cadmium exposure and cancer mortality in the Third National Health and Nutrition Examination Survey cohort. Occupational and environmental medicine 2012, 69 (2), 153-156.
7. Chiba, M.; Masironi, R., Toxic and trace elements in tobacco and tobacco smoke. Bulletin of the World Health Organization 1992, 70 (2), 269.
8. Organization, W. H.; Cancer, I. A. f. R. o., Tobacco smoke and involuntary smoking. Iarc: 2004; Vol. 83.
9. Neuspiel, D. R.; Markowitz, M.; Drucker, E., Intrauterine cocaine, lead, and nicotine exposure and fetal growth. American journal of public health 1994, 84 (9), 1492-1495.
10. Byrd, D. M.; Roegner, M. L.; Griffiths, J. C.; Lamm, S. H.; Grumski, K. S.; Wilson, R.; Lai, S., Carcinogenic risks of inorganic arsenic in perspective. International archives of occupational and environmental health 1996, 68 (6), 484-494.
11. Järup, L.; Berglund, M.; Elinder, C. G.; Nordberg, G.; Vanter, M., Health effects of cadmium exposure–a review of the literature and a risk estimate. Scandinavian journal of work, environment & health 1998, 1-51.
12. Pappas, R.; Polzin, G.; Zhang, L.; Watson, C.; Paschal, D.; Ashley, D., Cadmium, lead, and thallium in mainstream tobacco smoke particulate. Food and Chemical Toxicology 2006, 44 (5), 714-723.
13. Kazantzis, G., Thallium in the environment and health effects. Environmental Geochemistry and Health 2000, 22 (4), 275-280.
14. Cheam, V., Thallium contamination of water in Canada. Water Quality Research Journal of Canada 2001, 36 (4), 851-877.
15. 周劍平、林雲卿, 鉈的特性與健康危害. 勞工安全衛生簡訊, 第58期,頁 51-53.
16. Nolan, A.; Schaumlöffel, D.; Lombi, E.; Ouerdane, L.; Łobiński, R.; McLaughlin, M., Determination of Tl (I) and Tl (III) by IC-ICP-MS and application to Tl speciation analysis in the Tl hyperaccumulator plant Iberis intermedia. Journal of Analytical Atomic Spectrometry 2004, 19 (6), 757-761.
17. Lin, T.-S.; Nriagu, J. O., Thallium speciation in river waters with Chelex-100 resin. Analytica Chimica Acta 1999, 395 (3), 301-307.
18. Mol, W., Determination of thallium in river sediment by flow injection on-line sorption preconcentration in a knotted reactor coupled with electrothermal atomic absorption spectrometry. Analyst 1997, 122 (7), 667-671.
19. Al Hammouri, F.; Darwazeh, G.; Said, A.; Ghosh, R. A., Acute thallium poisoning: series of ten cases. Journal of medical toxicology 2011, 7 (4), 306-311.
20. Meeravali, N. N.; Madhavi, K.; Kumar, S. J., Microwave assisted aqua regia extraction of thallium from sediment and coal fly ash samples and interference free determination by continuum source ETAAS after cloud point extraction. Talanta 2013, 104, 180-186.
21. Cherevko, A.; Polyakova, G., Determination of total thallium in soils by atomic emission spectrography using a two-jet arc plasmatron. Journal of Analytical Chemistry 2005, 60 (2), 144-148.
22. Solovyev, N. D.; Ivanenko, N. B.; Ivanenko, A. A., Whole blood thallium determination by GFAAS with high-frequency modulation polarization Zeeman effect background correction. Biological Trace Element Research 2011, 143 (1), 591-599.
23. Bagheri, H.; Afkhami, A.; Khoshsafar, H.; Rezaei, M.; Sabounchei, S. J.; Sarlakifar, M., Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode. Analytica Chimica Acta 2015, 870, 56-66.
24. Ensafi, A. A.; Rezaei, B., Speciation of thallium by flow injection analysis with spectrofluorimetric detection. Microchemical Journal 1998, 60 (1), 75-83.
25. Firouzabadi, Z. D.; Shabani, A. M. H.; Dadfarnia, S.; Ehrampoush, M. H., Preconcentration and speciation of thallium by ferrofluid based dispersive solid phase extraction and flame atomic absorption spectrometry. Microchemical Journal 2017, 130, 428-435.
26. Sindern, S.; Schwarzbauer, J.; Gronen, L.; Görtz, A.; Heister, S.; Bruchmann, M., Tl-speciation of aqueous samples–a review of methods and application of IC-ICP-MS/LC-MS procedures for the detection of (CH3) 2Tl+ and Tl+ in river water. International Journal of Environmental Analytical Chemistry 2015, 95 (9), 790-807.
27. Moens, L.; Vanhaecke, F.; Bandura, D.; Baranov, V.; Tanner, S., Elimination of isobaric interferences in ICP-MS, using ion–molecule reaction chemistry: Rb/Sr age determination of magmatic rocks, a case study. Journal of Analytical Atomic Spectrometry 2001, 16 (9), 991-994.
28. Tanner, S. D.; Baranov, V. I.; Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochimica Acta Part B: Atomic Spectroscopy 2002, 57 (9), 1361-1452.
29. 王若芸, 液相層析結合感應耦合電漿質譜儀於銻、鉈、砷與硒分析之應用. 國立中山大學 2006.
30. 劉貞綾, 液相層析結合感應耦合電漿質譜儀於鉈物種分析之應用. 國立中山大學 2009.
31. Coetzee, P.; Fischer, J.; Hu, M., Simultaneous separation and determination of Tl (I) and Tl (III) by IC-ICP-OES and IC-ICP-MS. Water Sa 2003, 29 (1), 17-22.
32. Krasnodębska‐Ostręga, B.; Pałdyna, J.; Wawrzyńska, M.; Stryjewska, E., Indirect anodic stripping voltammetric determination of Tl (I) and Tl (III) in the Baltic seawater samples enriched in thallium species. Electroanalysis 2011, 23 (3), 605-610.
33. Roje, V., Fast method of multi-elemental analysis of stream sediment samples by inductively coupled plasma-mass spectrometry (ICP-MS) with prior single-step microwave-assisted digestion. Journal of the Brazilian Chemical Society 2011, 22 (3), 532-539.
34. 黃馨儀, 感應耦合電漿質譜儀於嬰兒食品中多重微量元素分析與碘及溴物種型態分析之應用. 國立中山大學 2016.
35. Ajab, H.; Yaqub, A.; Malik, S. A.; Junaid, M.; Yasmeen, S.; Abdullah, M. A., Characterization of toxic metals in tobacco, tobacco smoke, and cigarette ash from selected imported and local brands in Pakistan. The Scientific World Journal 2014, 2014.
36. https://en.wikipedia.org/wiki/Pentetic_acid.
37. Inczédy, J., Analytical applications of complex equilibria. E. Horwood: 1976.
38. Chu, Y. L.; Wang, R. Y.; Jiang, S. J., Speciation Analysis of Thallium by Reversed‐phase Liquid Chromatography‐Inductively Coupled Plasma Mass Spectrometry. Journal of the Chinese Chemical Society 2012, 59 (2), 219-225.
39. Karlsson, U.; Düker, A.; Karlsson, S., Separation and quantification of Tl (I) and Tl (III) in fresh water samples. Journal of Environmental Science and Health Part A 2006, 41 (7), 1155-1167.
40. Arpadjan, S.; Petrova, P.; Knutsson, J., Speciation analysis of thallium in water samples after separation/preconcentration with the Empore™ chelating disk. International Journal of Environmental Analytical Chemistry 2011, 91 (11), 1088-1099.
41. Gil, R. A.; Pacheco, P. H.; Smichowski, P.; Olsina, R. A.; Martinez, L. D., Speciation analysis of thallium using electrothermal AAS following on-line pre-concentration in a microcolumn filled with multiwalled carbon nanotubes. Microchimica Acta 2009, 167 (3-4), 187.
42. Pałdyna, J.; Krasnodębska‐Ostręga, B.; Sadowska, M.; Gołębiewska, J., Indirect speciation analysis of thallium in plant extracts by anodic stripping voltammetry. Electroanalysis 2013, 25 (8), 1926-1932.
43. Pappas, R.; Polzin, G.; Watson, C.; Ashley, D., Cadmium, lead, and thallium in smoke particulate from counterfeit cigarettes compared to authentic US brands. Food and Chemical Toxicology 2007, 45 (2), 202-209.

第二部分
1. Mansor, N.; Ali, D. E. B. M.; Yaacob, M. R., Cosmetic usage in Malaysia: understanding of the major determinants affecting the users. International Journal of Business and Social Science 2010, 1 (3).
2. Draelos, Z. D., Special considerations in eye cosmetics. Clinics in dermatology 2001, 19 (4), 424-430.
3. Lim, J. S. J.; Ho, Y. B.; Hamsan, H., Heavy metals contamination in eye shadows sold in Malaysia and user's potential health risks. Annals of Tropical Medicine and Public Health 2017, 10 (1), 56.
4. Contado, C.; Pagnoni, A., A new strategy for pressed powder eye shadow analysis: allergenic metal ion content and particle size distribution. Science of the total environment 2012, 432, 173-179.
5. Mousavi, Z.; Ziarati, P.; Shariatdoost, A., Determination and safety assessment of lead and cadmium in eye shadows purchased in local market in tehran. J Environ Anal Toxicol 2013, 3 (193), 2161-0525.1000193.
6. Allenby, C.; Basketter, D., An arm immersion model of compromised skin. Contact dermatitis 1993, 28 (3), 129-133.
7. Sneyers, L.; Verheyen, L.; Vermaercke, P.; Bruggeman, M., Trace element determination in beauty products by k0-instrumental neutron activation analysis. Journal of radioanalytical and nuclear chemistry 2009, 281 (2), 259-263.
8. Wurster, S.; Kratz, E.; Lachenmeier, D. W.; Mildau, G., Spectrophotometric quantification of toxicologically relevant concentrations of chromium (VI) in cosmetic pigments and eyeshadow using synthetic lachrymal fluid extraction. International Journal of Spectroscopy 2012, 2012.
9. Ebrahimzadeh, H.; Moazzen, E.; Amini, M. M.; Sadeghi, O., Pyridine‐2, 6‐diamine‐functionalized Fe3O4 nanoparticles as a novel sorbent for determination of lead and cadmium ions in cosmetic samples. International journal of cosmetic science 2013, 35 (2), 176-182.
10. Petrucci, F.; Senofonte, O., Determination of Cr (VI) in cosmetic products using ion chromatography with dynamic reaction cell-inductively coupled plasma-mass spectrometry (DRC-ICP-MS). Analytical Methods 2015, 7 (12), 5269-5274.
11. Bocca, B.; Pino, A.; Alimonti, A.; Forte, G., Toxic metals contained in cosmetics: a status report. Regulatory Toxicology and Pharmacology 2014, 68 (3), 447-467.
12. Feng, X.; Wu, S.; Wharmby, A.; Wittmeier, A., Microwave digestion of plant and grain standard reference materials in nitric and hydrofluoric acids for multi-elemental determination by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 1999, 14 (6), 939-946.
13. dos Santos, E. J.; Herrmann, A. B.; Frescura, V. L. A.; Curtius, A. J., Simultaneous determination of As, Hg, Sb, Se and Sn in sediments by slurry sampling axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation with internal standardization. Journal of Analytical Atomic Spectrometry 2005, 20 (6), 538-543.
14. Segade, S. R.; Tyson, J. F., Evaluation of two flow injection systems for mercury speciation analysis in fish tissue samples by slurry sampling cold vapor atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 2003, 18 (3), 268-273.
15. dos Santos, E. J.; Herrmann, A. B.; Frescura, V. L. A.; Welz, B.; Curtius, A. J., Determination of lead in sediments and sewage sludge by on-line hydride-generation axial-view inductively-coupled plasma optical-emission spectrometry using slurry sampling. Analytical and bioanalytical chemistry 2007, 388 (4), 863-868.
16. Yu, H.-S.; Liao, W.-T.; Chai, C.-Y., Arsenic carcinogenesis in the skin. Journal of biomedical science 2006, 13 (5), 657-666.
17. Tsai, S.-M.; Wang, T.-N.; Ko, Y.-C., Mortality for certain diseases in areas with high levels of arsenic in drinking water. Archives of Environmental Health: An International Journal 1999, 54 (3), 186-193.
18. Guy, R. H., Metals and the skin: topical effects and systemic absorption. CRC Press: 1999.
19. 行政院衛生福利部食品藥物管理署, 化妝品中含不純物重金屬鉛、砷之殘留限量. 民國103年1月8號.
20. Faroon, O.; Ashizawa, A.; Wright, S.; Tucker, P.; Jenkins, K.; Ingerman, L.; Rudisill, C., Toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry (US), Atlanta (GA): 2012.
21. Lavilla, I.; Cabaleiro, N.; Costas, M.; De la Calle, I.; Bendicho, C., Ultrasound-assisted emulsification of cosmetic samples prior to elemental analysis by different atomic spectrometric techniques. Talanta 2009, 80 (1), 109-116.
22. Wester, R. C.; Maibach, H. I.; Sedik, L.; Melendres, J.; DiZio, S.; Wade, M., In vitro percutaneous absorption of cadmium from water and soil into human skin. Fundamental and applied toxicology 1992, 19 (1), 1-5.
23. Cancer, I. A. f. R. o.; Cancer, I. A. f. R. o., Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. World Health Organization, International Agency for Research on Cancer: 1993; Vol. 58.
24. 行政院衛生福利部食品藥物管理署, 化粧品中禁止使用成分總表. 民國105年7月1日.
25. Navas-Acien, A.; Silbergeld, E. K.; Sharrett, A. R.; Calderon-Aranda, E.; Selvin, E.; Guallar, E., Metals in urine and peripheral arterial disease. Environmental health perspectives 2005, 113 (2), 164.
26. Hansen, C.; Tsirigotaki, A.; Bak, S. A.; Pergantis, S. A.; Stürup, S.; Gammelgaard, B.; Hansen, H. R., Elevated antimony concentrations in commercial juices. Journal of Environmental Monitoring 2010, 12 (4), 822-824.
27. Valentine, B., Triumphal Chariot of Antimony. Jazzybee Verlag: 2014.
28. 行政院衛生福利部食品藥物管理署, 化粧品中含不純物之重金屬限量規定. 民國105年4月11日.
29. Ruzicka, J.; Hansen, E. H., Flow injection analysis. John Wiley & Sons: 1988; Vol. 62.
30. Madrid, Y.; Cámara, C., Lead hydride generation atomic absorption spectrometry: an alternative to electrothermal atomic absorption spectrometry. A review. Analyst 1994, 119 (8), 1647-1658.
31. Pohl, P., Recent advances in chemical vapour generation via reaction with sodium tetrahydroborate. TrAC Trends in Analytical Chemistry 2004, 23 (1), 21-27.
32. D'Ulivo, A., Chemical vapor generation by tetrahydroborate (III) and other borane complexes in aqueous media: a critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation. Spectrochimica Acta Part B: Atomic Spectroscopy 2004, 59 (6), 793-825.
33. Yan, X. P.; Ni, Z. M., Vapour generation atomic absorption spectrometry. Analytica chimica acta 1994, 291 (1-2), 89-105.
34. Hatch, W. R.; Ott, W. L., Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. Analytical Chemistry 1968, 40 (14), 2085-2087.
35. Vieira, M. A.; Ribeiro, A. S.; Curtius, A. J.; Sturgeon, R. E., Determination of total mercury and methylmercury in biological samples by photochemical vapor generation. Analytical and bioanalytical chemistry 2007, 388 (4), 837-847.
36. Zheng, C.; Ma, Q.; Wu, L.; Hou, X.; Sturgeon, R. E., UV photochemical vapor generation–atomic fluorescence spectrometric determination of conventional hydride generation elements. Microchemical Journal 2010, 95 (1), 32-37.
37. de Jesus, A.; Zmozinski, A. V.; Vieira, M. A.; Ribeiro, A. S.; da Silva, M. M., Determination of mercury in naphtha and petroleum condensate by photochemical vapor generation atomic absorption spectrometry. Microchemical Journal 2013, 110, 227-232.
38. Vassileva, E.; Quétel, C. R., Certification measurement of the cadmium, copper and lead contents in rice using isotope dilution inductively coupled plasma mass spectrometry. Analytica chimica acta 2004, 519 (1), 79-86.
39. Zhu, Y.; Inagaki, K.; Chiba, K., Determination of Fe, Cu, Ni, and Zn in seawater by ID-ICP-MS after preconcentration using a syringe-driven chelating column. Journal of Analytical Atomic Spectrometry 2009, 24 (9), 1179-1183.
40. Milne, A.; Landing, W.; Bizimis, M.; Morton, P., Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS). Analytica chimica acta 2010, 665 (2), 200-207.
41. Hwang, T. J.; Jiang, S. J., Determination of copper, cadmium and lead in biological samples by isotope dilution inductively coupled plasma mass spectrometry after on-line pre-treatment by anodic stripping voltammetry. Journal of Analytical Atomic Spectrometry 1996, 11 (5), 353-357.
42. 黃覃君, 流動注入冷蒸氣生成裝置結合同位素稀釋感應耦合電漿質譜儀分析法定量真實樣品中微量鎘之研究. 國立中山大學 1999.
43. Volpe, M.; Nazzaro, M.; Coppola, R.; Rapuano, F.; Aquino, R., Determination and assessments of selected heavy metals in eye shadow cosmetics from China, Italy, and USA. Microchemical Journal 2012, 101, 65-69.
44. Matusiewicz, H.; Mroczkowska, M., Hydride generation from slurry samples after ultrasonication and ozonation for the direct determination of trace amounts of As (III) and total inorganic arsenic by their in situ trapping followed by graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 2003, 18 (7), 751-761.
45. Feng, Y.; Narasaki, H.; Tian, L.; Chen, H., Speciation of Sb (III) and Sb (V) by hydride generation high-resolution ICPMS combined with prereduction of Sb (V) with L-cysteine. Atomic spectroscopy 2000, 21 (1), 30-36.
46. Guo, X.; Guo, X., Studies on the reaction between cadmium and potassium tetrahydroborate in aqueous solution and its application in atomic fluorescence spectrometry. Analytica chimica acta 1995, 310 (2), 377-385.
47. Frank, J.; Krachler, M.; Shotyk, W., Direct determination of arsenic in acid digests of plant and peat samples using HG-AAS and ICP-SF-MS. Analytica chimica acta 2005, 530 (2), 307-316.
48. Sun, H. W.; Suo, R., Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry. Analytica chimica acta 2004, 509 (1), 71-76.
49. Raber, G.; Raml, R.; Goessler, W.; Francesconi, K. A., Quantitative speciation of arsenic compounds when using organic solvent gradients in HPLC-ICPMS. Journal of Analytical Atomic Spectrometry 2010, 25 (4), 570-576.
50. Larsen, E. H.; Stürup, S., Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation. Journal of Analytical Atomic Spectrometry 1994, 9 (10), 1099-1105.
51. Ding, W. W.; Sturgeon, R., Evaluation of electrochemical hydride generation for the determination of total antimony in natural waters by electrothermal atomic absorption spectrometry with in situ concentration. Journal of Analytical Atomic Spectrometry 1996, 11 (3), 225-230.
52. Chen, W. N.; Jiang, S. J.; Chen, Y. L.; Sahayam, A., Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions. Analytica chimica acta 2015, 860, 8-14.
53. Chen, W. N.; Jiang, S. J.; Chen, Y. L.; Sahayam, A., Determination of Pb in lipsticks by flow injection chemical vapor generation isotope dilution inductively coupled plasma mass spectrometry. Microchemical Journal 2015, 119, 128-132.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code