Responsive image
博碩士論文 etd-0619117-140119 詳細資訊
Title page for etd-0619117-140119
論文名稱
Title
溶液製程製作鉬氧化物陽極緩衝層應用於反置式有機太陽能電池
Solution-process of Molybdenum oxide as anode buffer layer in inverted organic solar cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-11
繳交日期
Date of Submission
2017-07-19
關鍵字
Keywords
溶液製程、高穩定性、緩衝層、奈米顆粒、鉬氧化物
high stability, Molybdenum oxide, solution process, nanoparticle, buffer layers
統計
Statistics
本論文已被瀏覽 5656 次,被下載 0
The thesis/dissertation has been browsed 5656 times, has been downloaded 0 times.
中文摘要
本研究以型號為AI4083之PEDOT:PSS高分子導電溶液,與鉬氧化物奈米顆粒溶液(MoOx NPs)混合,以不同體積百分濃度配製不同配方,觀測不同濃度配方製作之緩衝層對元件之表現,並達元件高穩定性。
首先,MoOx NPs溶液是式利用市售Mo粉末,溶解於溶劑內以雙氧水進行氧化,再進一步將奈米等級之顆粒蒐集製作成溶液。
以PEDOT:PSS與MoOx NPs混合製作成前導溶液,先確認薄膜成份於製作前後無產生內容物之變異,再以主動層烤乾溫度烤乾,製作成元件。
本研究中,探討不同濃度前導溶液配方製作之薄膜,其在成份組成不同、膜層厚度近乎相似條件下,對反置式太陽能電池元件之影響。元件結構為 ITO / ZnO / P3HT:PCBM / PEDOT:PSS:MoOx NPs / Ag。
結果可發現,以10% 與20% MoOx NPs配方製作陽極緩衝層之元件,其表現得以超越蒸鍍製程之元件。其中以10% MoOx NPs配方之元件表現最為傑出,其薄膜內MoOx NPs與PEDOT:PSS之比例,不但在接觸上,PEDOT:PSS與主動層有機材料間接觸良好,MoOx NPs與銀陽極無機材料間也具有良好之接觸,且該比例也易於載子傳輸。另外,推估薄膜內之鉬元素尚未完全氧化,其緩慢持續氧化除了能使元件表現略微提升,也能間接避免主動層氧化變質。該元件在AM 1.5G 100 mW cm-2模擬太陽光光源照射下,元件具功率轉換效率產生0.76% 提升到達2.91%,短路電流產生1.3 mA cm-2提升達到7.5 mA cm-2,開路電壓則具有0.05 V些微提升到達0.65 V。此外,元件製作完成後一個月,表現狀態穩定並與製作完成時無明顯差異,具有原元件近100%之表現。
Abstract
In this study, we mix the PEDOT:PSS polymer conductive solution with Molybdenum oxide nanoparticle solution in different volume percentages. Research different buffer layers in inverted organic solar cell devices with different volume percentages nanoparticle solution might cause different performance, arriving high device stability.
First, our Molybdenum oxide nanoparticle was made by Molybdenum powder, and oxidized by Hydrogen peroxide, than getting the Molybdenum oxide nanoparticle.
Second, we mix the PEDOT:PSS polymer conductive solution and Molybdenum oxide nanoparticle as the precursor solution. The Molybdenum oxide nanoparticle solution was volume percentages 0%, 5%, 10%, 20%, 30% in the PEDOT:PSS polymer conductive solution. Confirm the thin films’ composition and anneal the thin films with the same temperature as active layer, further making the IOSC devices.
Here, we make different the buffer layer thin films with solution process under almost the same thin film thickness and different composition, then applying in inverted organic solar cells. Our device structure is ITO / ZnO / P3HT:PCBM / PEDOT:PSS:MoOx NPs / Ag.
In the end, we can find that the solution process device with solution process 10%, 20% MoOx NPs can show higher power conversion efficiency than the thermal evaporation devices, which 10% MoOx NPs device is best. In this device, besides the wonderful contact between PODOT:PSS and active layer, the contact between MoOx NPs and Ag anode were also awesome. We thought that because the good contact were benefit to the carrier transportation. On the other hands, we thought that the Molybdenum in the thin film wasn’t oxidized completely. It would be oxidized slowly and cause the better device performance, even could indirectly protect the oxidization of the active layer. Under the Solar simulator AM 1.5G 100 mW cm-2, the 10% MoOx NPs device could provide power conversion efficiency of 2.91%, Short circuit current density of 7.5 mA cm-2 , open circuit Voltage of 0.65 V. Finally, our device also showed high stability with almost 100% performance after 30 days.
目次 Table of Contents
中文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi
第一章 序論 1
1-1 前言 1
1-2 太陽能電池的種類與介紹 3
1-3 有機太陽能電池重大研究歷程 5
1-3-1 單層結構有機太陽能電池-有機太陽能電池之起源 5
1-3-2 異質界面有機太陽能電池 6
1-4 緩衝層 7
1-4-1 陽極緩衝層 8
1-5 文獻回顧 9
1-6 研究動機 12
第二章 基礎理論 14
2-1 能量及電荷轉移機制 14
2-2 有機太陽能電池工作原理 16
2-3 有機太陽能電池元件操作分析 21
2-3-1 短路電流 (short circuit current, Isc) 22
2-3-2 開路電壓 (open circuit voltage, Voc) 22
2-3-3 填充因子 (fill factor, FF) 22
2-3-4 功率轉換效率 (power conversion efficiency, PCE) 23
第三章 實驗 24
3-1 實驗架構 24
3-2 實驗藥品 27
3-3 製程設備 29
3-4-1 動態光散射儀 30
3-4-2太陽光光譜模擬測量系統(Solar Simulator) 31
3-4-3 表面輪廓儀(surface profiler,亦稱為alpha-step) 32
3-4-4 X光光電子能譜儀 (X-ray photoelectron spectroscopy;XPS) 33
3-5 藥品配製 34
3-5-1溶液製程 PEDOT:PSS (AI4083) 混合MoOx NPs 34
3-5-2主動層 P3HT/PCBM材料 34
3-5-3溶液製程陰極緩衝層 溶膠凝膠氧化鋅(ZnO) 34
3-6 實驗步驟 35
3-6-1 ITO透明導電玻璃基板圖形化 35
3-6-2 反置式有機太陽能電池基礎元件製成 37
3-6-3溶液製程陽極緩衝層於反置式有機太陽能電池之製成 39
第四章 結果與討論 41
4-1 乾製成與濕製成製作陽極緩衝層對元件之影響 42
4-1-1 薄膜成分確認 42
4-1-2 薄膜厚度分析 44
4-1-3 元件表現 45
4-1-4 小結 46
4-2 提升濕製程前導溶液鉬氧化物濃度對元件之影響 47
4-2-1薄膜成分確認 47
4-2-2薄膜厚度分析 49
4-2-3 元件表現 50
4-2-4小結 51
4-3大幅度提升濕製程前導溶液鉬氧化物濃度對元件之影響 52
4-3-1薄膜成分確認 52
4-3-2薄膜厚度分析 54
4-3-3元件表現 55
4-4綜合各陽極緩衝層特性及元件之影響 57
4-4-1 元件綜合比較 57
4-4-2 蒸鍍製程元件以及最佳溶液製程元件之比較 59
4-4-3 蒸鍍製程元件以及最佳溶液製程元件之生命週期 60
4-4-4 薄膜XPS特性檢視 61
第五章 總結 62
參考文獻 63
參考文獻 References
[1] 經濟部能源局,能源報導,太陽能發電的機會與挑戰 October 2015
[2] 世界各國每年用電量統計資料。October 2016,can be found:The U.S. Energy Information Administration,http://www.eia.gov/beta/international/
[3] Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. nature, 488(7411), 294-303.
[4] D. Kearns and M. Calvin. J. Chem. Phys.29, 950 (1958).
[5] Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied Physics Letters, 48(2), 183-185.
[6] Bundgaard, E., & Krebs, F. C. (2007). Low band gap polymers for organic photovoltaics. Solar Energy Materials and Solar Cells, 91(11), 954-985.
[7] Kroon, R., Lenes, M., Hummelen, J. C., Blom, P. W., & De Boer, B. (2008). Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polymer Reviews, 48(3), 531-582.
[8] Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T. Q., Dante, M., & Heeger, A. J. (2007). Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 317(5835), 222-225.
[9] Chen, L. M., Hong, Z., Li, G., & Yang, Y. (2009). Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells. Advanced Materials, 21(14‐15), 1434-1449.
[10] Po, R., Carbonera, C., Bernardi, A., & Camaioni, N. (2011). The role of buffer layers in polymer solar cells. Energy & Environmental Science, 4(2), 285-310.
[11] Wang, G., Jiu, T., Li, P., Li, J., Sun, C., Lu, F., & Fang, J. (2014). Preparation and characterization of MoO 3 hole-injection layer for organic solar cell fabrication and optimization. Solar Energy Materials and Solar Cells, 120, 603-609.
[12] Baigent, D. R., Greenham, N. C., Grüner, J., Marks, R. N., Friend, R. H., Moratti, S. C., & Holmes, A. B. (1994). Light-emitting diodes fabricated with conjugated polymers—recent progress. Synthetic Metals, 67(1-3), 3-10.
[13] Glatthaar, M., Niggemann, M., Zimmermann, B., Lewer, P., Riede, M., Hinsch, A., & Luther, J. (2005). Organic solar cells using inverted layer sequence. Thin Solid Films, 491(1), 298-300.
[14] Sun, J. Y., Tseng, W. H., Lan, S., Lin, S. H., Yang, P. C., Wu, C. I., & Lin, C. F. (2013). Performance enhancement in inverted polymer photovoltaics with solution-processed MoO x and air-plasma treatment for anode modification. Solar Energy Materials and Solar Cells, 109, 178-184.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 34.229.239.82
論文開放下載的時間是 校外不公開

Your IP address is 34.229.239.82
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code