Responsive image
博碩士論文 etd-0619118-105053 詳細資訊
Title page for etd-0619118-105053
論文名稱
Title
利用數值模型研究轉爐底吹破壞行為
Study on the bottom-blowing erosion in converter by using numerical model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-09
繳交日期
Date of Submission
2018-07-19
關鍵字
Keywords
轉爐底吹、氣泡回擊、水模實驗、數值模擬、多相流
Multiphase Flow, Numerical Simulation, Water Model, Back-Attack, Converter Bottom-Blowing
統計
Statistics
本論文已被瀏覽 5669 次,被下載 0
The thesis/dissertation has been browsed 5669 times, has been downloaded 0 times.
中文摘要
轉爐底吹過程會加速底吹管及出口附近的耐火材料損耗,若能了解其破壞機制並加以控制,可延長轉爐耐火材料壽命。本研究以二相流VOF模型,模擬水模底吹空氣侵蝕實驗,測試不同底吹流量下,氣體回擊對底吹管附近壁面的破壞程度。研究發現模擬結果與實驗數據有良好的一致性。當低流量時,侵蝕破壞範圍隨底吹流量上升而增加;然而,當流量大至特定流量時,破壞範圍會變小。此外,本研究也建立煉鋼的熱模模型,模擬真實底吹煉鋼的條件,除了尺寸和鐵水性質與水模不同外,也考慮底吹氣體進入鐵水後,受到加熱升溫而膨脹的影響。研究發現熱模底吹破壞範圍可達12倍管徑,模擬結果也顯示,隨著流量增加,破壞範圍也有轉折變小的現象。此外,當流速增加至破壞範圍縮小,其在中間位置之破壞程度,仍隨著流速上升而增加。熱模的模擬結果可以提供轉爐底吹煉鋼時噴吹流量的參考,避開破壞較嚴重的流量範圍,以延長轉爐壁使用壽命,有助於提高轉爐作業效率及降低冶煉成本。
Abstract
The bottom-blowing process of the converter accelerates the erosion of refractory material near the tuyere and the tuyere tip. If the damage mechanism is understood and controlled, the life of the converter’s refractory material can be extended. This study simulates the water model’s bottom-blowing erosion experiment by using two phase flow VOF model, testing the degree of damage on the wall near the tuyere which was caused by gas back-attack in different bottom-blowing of flow rate. This study finds that the simulation result has great correspondence with the data of the experiment. The flow rate of bottom-blowing grow and the range of erosion expanded at the same time when the flow rate is low. However, when the flow rate gets to the critical flow rate, the range of damage will shrink. Besides, this study builds a hot model of steelmaking which simulated the real condition of bottom-blowing steelmaking. Besides the difference between liquid iron properties and water model, this study also considers the influence caused by the bottom-blowing-gas expanding by the heat after it enters the liquid iron. This study also finds that the range of damage of hot model bottom-blowing can reach to 12 times in tuyere diameter. The result of the simulation also indicated that the range of damage shrinks when the flow rate grows. When the flow rate grows to where the damage range is reduced, the degree of damage at the intermediate position still increases as the flow rate grows. The simulation result of a hot model can offer a reference to the flow rate of the converter’s bottom-blowing steelmaking. The simulation result of a hot model also can extend the using time of the converter by avoiding the flow range which causes strong damages, so it is helpful to enhance the efficiency of converter’s operation and reduce the cost of steelmaking.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
符號說明 x
第1章、 序論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 煉鋼發展歷史[2-4] 2
1.2.2 底吹耐火材料破壞機制 2
1.2.3 底吹流量與回擊關係 4
1.2.4 底吹射流狀態與回擊關係 4
1.2.5 可消耗性水模建立(中鋼公司提供) 5
1.3 研究目的 8
第2章、 研究方法 9
2.1 模型介紹 9
2.1.1 二維底吹水模 9
2.1.2 三維底吹水模 10
2.1.3 三維底吹凹坑水模 10
2.1.4 三維底吹熱模 11
2.1.5 材料參數及流量條件 12
2.2 基本假設 14
2.2.1 二維水模 14
2.2.2 三維水/熱模 14
2.3 統御方程式 15
2.4 模型格點及數值方法 18
第3章、 結果與討論 19
3.1 回擊流場及紊流模型驗證 19
3.1.1 回擊現象說明 19
3.1.2 紊流模型測試 21
3.2 底吹水模分析 23
3.2.1 二維底吹水模 25
3.2.2 三維底吹水模 30
3.2.3 破壞判斷指標值選定 35
3.2.4 考慮氣體動壓所造成破壞 38
3.3 三維底吹水模凹坑 40
3.4 三維底吹熱模 42
3.4.1 熱模模型不考慮高溫鐵水熱傳影響 42
3.4.2 熱模模型 44
第4章、 結論 46
第5章、 未來工作 47
參考文獻 48
附錄 50
參考文獻 References
[1] K. Ohnuki, K. Umezawa, T. Hiraoka, N. Matsumoto and T. Inoue, Development of steel scrap melting process, Nippon Steel Technical Report No. 61, 1994.
[2] 雷亞, 楊治立, 任正德, 孫亞琴, 周書才, 煉鋼學, 冶金工業出版社, 2010.
[3] 朱苗勇, 現代冶金學, 冶金工業出版社, 2011.
[4] 野崎努, 底吹轉爐法-引進.攪拌效果.頂底複合吹煉, 冶金工業出版社, 2008.
[5] 數土文夫, Q-BOP導入の頃の思い出, 鉄と鋼, 1990.
[6] Jing-fa Huang, Concrete measures for improving service life of converter lining, Heilongjiang Metallurgy, 2014.
[7] Muammer BİLGİÇ, KONVERTER DİPTEN GAZ ÜFLEME REFRAKTERLERİNİN AŞINMA PARAMETRELERİ, 1988.
[8] 侯正豪, 碳氫氣體在底吹氧煉鋼製程中的作用, 碩士論文, 2016.
[9] T. Aoki, The Mechanism of the Back-attack Phenomenon on a Bottom Blowing Tuyere Investigated in Model Experiments, Tetsu-to-Hagane, 1990.
[10] T. Aoki, Elimination of the Back-attack Phenomenon on a Bottom Blowing Tuyere Investigated in Model Experiments, Tetsu-to-Hagane, 1990.
[11] Q.X. Yang, H. Gustavsson, Erosion of refractory during gas injection–a cavitation based model, Scandinavian Journal of metallurgy, 1990.
[12] Q.X. Yang , H. Gustavsson, Effects of gas jet instability on refractory wear–a study by high-speed photography, Scandinavian Journal of Metallurgy, 1992.
[13] T. Van, P. Fitzsimmons, E. Foeth, Z. Li, Cavitation Erosion – A review of physical mechanisms and erosion risk models, Proceedings of the 7th International Symposium on Cavitation, 2009.
[14] Ji-He WEI, Hong-Li ZHU, Qing-Yuan JIANG, Guo-Min SHI, He-Bing CHI, Hai-Jiang WANG, Physical Modeling Study on Combined Side and Top Blowing AOD Refining Process of Stainless Steel: Back-attack Phenomenon of Gas Streams with Horizontal Side Blowing and Its Influence on Erosion and Wear of Refractory Lining, ISIJ International, 2010.
[15] Chau-Jeng Su, Jaw-Min Chou, Shih-Hsien Liu, Effect of Bottom Blowing Conditions on Refractory Erosion in the Ironmaking Smelter by Water Modeling, The Japan Institute of Metals, 2010.
[16] Hong-Hui Shi, Qiang Guo, Chao Wang, Ruo-Ling Dong, Li-Te Zhang, Hui-Xia Jia, Xiao-Gang Wang, Bo-Yi Wang, Oscillation flow induced by underwater supersonic gas jets, Shock Waves, 2010.
[17] Hong-Hui Shi, Bo-Yi Wang, Zhen-Qing Dai, Research on the mechanics of underwater supersonic gas jets, Science China Physics, Mechanics and Astronomy, 2010.
[18] Jia-Ning Tang, Chien-Chou Tseng, Ning-Fei Wang, Wei Shyy, Flow Structures of Gaseous Jets Injected into Water for Underwater Propulsion, 49th AIAA Aerospace Sciences Meeting, 2011.
[19] ANSYS Fluent User’s Guide, release 16, ANSYS Inc, 2015.
[20] 王麗潔, 空蝕與紊流模型之最佳化研究以及比較, 碩士論文, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.213.80.203
論文開放下載的時間是 校外不公開

Your IP address is 44.213.80.203
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code