Responsive image
博碩士論文 etd-0619118-170837 詳細資訊
Title page for etd-0619118-170837
論文名稱
Title
以DP-SQ:P3HT:PCBM為主動層之反置式有機太陽能電池
The Study of Organic Inverted Solar Cell incorporating DP-SQ:P3HT:PCBM as active layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-16
繳交日期
Date of Submission
2018-07-19
關鍵字
Keywords
短路電流、近紅外光波段、DP-SQ、反置式有機太陽能電池、混和層異質介面
the short circuit current, inverted solar cells, the near infrared absorption, DP-SQ, bulk heterojunction
統計
Statistics
本論文已被瀏覽 5678 次,被下載 0
The thesis/dissertation has been browsed 5678 times, has been downloaded 0 times.
中文摘要
本研究探討將一小分子電子施體材料(Electron Donor)2,4-Bis[4-(N,N-diphenylamino)-2,6-dihydroxyphenyl]squaraine(簡稱DP-SQ)摻雜進由電子施體材料Poly(3-hexylthiophene-2,5-diyl)(簡稱P3HT),以及電子受體材料(Electron Acceptor)[6,6]-phenyl C61 butyric acid methyl ester(簡稱PCBM)所組成的聚合物混和層異質介面(bulk heterojunction, BHJ)之反置式有機太陽能電池。
我們探討不同溶劑、不同溶解方式、不同濃度的P3HT:DP-SQ:PCBM薄膜吸收、表面粗糙度,進而將其作為主動層並製成反置式有機太陽能電池,元件結構為ITO/ZnO/P3HT:DP-SQ:PCBM/MoO3/Ag。
結果發現,濃度1.8wt.%製成之參雜元件,元件面積為0.03 cm2,在AM 1.5G 100 mW/cm2的模擬太陽光源照射下,開路電壓0.66 V,短路電流密度6.48 mA/cm,填充因子64%,能量轉換效率2.74%,藉由近紅外光吸收貢獻於光電流後,效率也由standard的2.55%提升至2.74%,而過多的材料加入將造成元件效率的下降。
以PL放光光譜量測可發現,DP-SQ加入後,薄膜放光強度相對於P3HT:PCBM來的更低,主因為DP-SQ之能階與P3HT、PCBM相對匹配,可當作緩衝層作用,將原本無法萃取出的能量萃取出來貢獻於光電流。
Abstract
In this study, we investigate the effects of adding a small molecule electron Donor material 2,4-Bis[4-(N,N-diphenylamino)-2,6-dihydroxyphenyl]squaraine (DP-SQ) into a Poly(3-hexylthiophene-2,5-diyl)(P3HT): [6,6]-phenyl C61 butyric acid methyl ester(PCBM) polymer bulk heterojunction inverted solar cell.
In this research, we investigate the optical absorption and surface roughness of the P3HT:DP-SQ:PCBM film whose solution was dissolved by different solvent and method, the devices were fabricated by incorporating the P3HT:DP-SQ:PCBM thin films as active layer. The structure of the inverted device is ITO/ ZnO/ P3HT:DP-SQ:PCBM/ MoO3/ Ag.
The results indicated that the device of the P3HT:PCBM blend with 1.8wt.%
DP-SQ, got the open voltage 0.66V, the short circuit current 6.48 mA/cm2 and the power conversion efficiency 2.74%. Comparing with the standard device, power conversion efficiency was enhanced because of the near infrared absorption in the active layer, but the device performance would decrease if excessive DP-SQ was added into the active layer.
According to the PL measuring, we found that after adding DP-SQ into P3HT:PCBM film, the light intensity was lower than P3HT:PCBM film without DP-SQ, which was caused by the matched energy level of DP-SQ、P3HT and PCBM. Here, DP-SQ could be the buffer material and help the exciton harvesting.
目次 Table of Contents
中文審定書 i
英文審定書 ii
誌謝 iii
摘要 v
Abstract vi
目錄 viii
圖目錄 xi
表目錄 xiii
第一章 序論 1
1-1 前言 1
1-2 太陽能電池的種類與介紹 3
1-3 有機太陽能電池結構與技術發展 5
1-3-1 單層結構有機太陽能電池 5
1-3-2 雙層異質界面有機太陽能電池 6
1-3-3 混合層異質接面有機太陽能電池 7
1-3-4 混合層異質接面有機太陽能電池加入電極緩衝層 8
1-4 三元混摻太陽能電池(Ternary solar cells) 9
1-5 文獻回顧 10
1-6 研究動機 13
第二章 基礎理論 15
2-1 能量及電荷轉移機制 15
2-2 有機太陽能電池工作原理 16
2-3 有機太陽能電池元件操作分析 21
2-3-1 短路電流 (Short Circuit Current, ISC) 22
2-3-2 開路電壓 (Open Circuit Voltage, VOC) 22
2-3-5 填充因子(Fill Factor, FF) 23
2-3-6 功率轉換效率(Power Conversion Efficiency, PCE) 23
第三章 實驗 24
3-1 實驗架構 24
3-2 實驗藥品 26
3-3 製程設備 29
3-4 量測分析儀器與方法 31
3-4-1 紫外光/可見光光譜儀(UV-Visible Spectrometer) 31
3-4-2 原子力掃描探針顯微鏡 (Atomic Force Microscope;AFM) 32
3-4-3 太陽光譜模擬測量系統(Solar Simulator) 34
3-4-4 表面輪廓儀(Surface Profiler,或稱為Alpha-step) 35
3-4-5 螢光光譜儀(Fluorescence spectrometer,PL) 36
3-4-5 外部量子效率量測系統 37
(Incident photon conversion efficiency system,IPCE) 37
3-5 藥品配製 38
3-5-1 氧化鋅溶膠凝膠 38
3-5-2 P3HT/PCBM/DP-SQ材料 38
3-6 實驗步驟 39
3-6-1 ITO基版圖形化 39
3-6-2 反置式有機太陽能電池基礎元件製程 40
第四章 結果與討論 42
4-1 以鄰二氯苯為溶劑之主動層元件特性分析 43
4-2 DP-SQ:PCBM於不同溶劑下之UV-Vis吸收光譜量測 45
4-3 以氯苯為溶劑之主動層元件特性分析 46
4-3-1以氯苯為主動層溶劑之薄膜吸收光譜 48
4-3-2 以氯苯為主動層溶劑之薄膜表面粗糙度分析 50
4-3-3 以氯苯為溶劑不同溶解方式之主動層元件特性分析 52
4-3-4 以氯苯為溶劑並降低濃度之主動層元件特性分析 53
4-3-5 降低濃度之氯苯主動層元件外部量子效率分析 55
第五章 總結 58
參考文獻 59
參考文獻 References
[1] Kearns, D., & Calvin, M. (1958). Photovoltaic effect and photoconductivity in laminated organic systems. The Journal of chemical physics, 29(4), 950-951.
[2] Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied Physics Letters, 48(2), 183-185.
[3] Sariciftci, N. S., Smilowitz, L., Heeger, A. J., & Wudl, F. (1992). Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 258(5087), 1474-1476.
[4] Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270(5243), 1789-1791.
[5] Minnaert, B., & Burgelman, M. (2007). Efficiency potential of organic bulk heterojunction solar cells. Progress in Photovoltaics: Research and Applications, 15(8), 741-748.
[6] Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p‐n junction solar cells. Journal of applied physics, 32(3), 510-519.
[7] Koppe, M., Egelhaaf, H. J., Dennler, G., Scharber, M. C., Brabec, C. J., Schilinsky, P., & Hoth, C. N. (2010). Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral response of organic solar cells. Advanced Functional Materials, 20(2), 338-346.
[8] Lu, L., Xu, T., Chen, W., Landry, E. S., & Yu, L. (2014). Ternary blend polymer solar cells with enhanced power conversion efficiency. Nature Photonics, 8(9), 716-722.
[9] Liang, P. W., Chueh, C. C., Xin, X. K., Zuo, F., Williams, S. T., Liao, C. Y., & Jen, A. K. Y. (2015). High‐Performance Planar‐Heterojunction Solar Cells Based on Ternary Halide Large‐Band‐Gap Perovskites. Advanced Energy Materials, 5(1), 1400960
[10] Ferenczi, T. A., Müller, C., Bradley, D. D., Smith, P., Nelson, J., & Stingelin, N. (2011). Organic semiconductor: insulator polymer ternary blends for photovoltaics. Advanced Materials, 23(35), 4093-4097.
[11] Koppe, M., Egelhaaf, H. J., Dennler, G., Scharber, M. C., Brabec, C. J., Schilinsky, P., & Hoth, C. N. (2010). Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral response of organic solar cells. Advanced Functional Materials, 20(2), 338-346.
[12] Huang, J. S., Goh, T., Li, X., Sfeir, M. Y., Bielinski, E. A., Tomasulo, S., ... & Taylor, A. D. (2013). Polymer bulk heterojunction solar cells employing Forster resonance energy transfer. Nature Photonics, 7(6), 479-485.
[13] Lee, C. T., & Lee, C. H. (2013). Conversion efficiency improvement mechanisms of polymer solar cells by balance electron–hole mobility using blended P3HT: PCBM: pentacene active layer. Organic Electronics, 14(8), 2046-2050.
[14] Zhu, X., An, Q., Huang, H., Jiao, C., & Zhang, F. (2015). Improved efficiency of ternary the blend polymer solar cells by doping a narrow band gap polymer material. Science China Physics, Mechanics & Astronomy, 58(3), 1-5.
[15] Baigent, D. R., Greenham, N. C., Grüner, J., Marks, R. N., Friend, R. H., Moratti, S. C., & Holmes, A. B. (1994). Light-emitting diodes fabricated with conjugated polymers—recent progress. Synthetic Metals, 67(1-3), 3-10.
[16] Glatthaar, M., Niggemann, M., Zimmermann, B., Lewer, P., Riede, M., Hinsch, A., & Luther, J. (2005). Organic solar cells using inverted layer sequence. Thin Solid Films, 491(1-2), 298-300.
[17] An, Q., Zhang, F., Li, L., Wang, J., Zhang, J., Zhou, L., & Tang, W. (2014). Improved efficiency of bulk heterojunction polymer solar cells by doping low-bandgap small molecules. ACS applied materials & interfaces, 6(9), 6537-6544.

[18] Jørgensen, M., Norrman, K., Gevorgyan, S. A., Tromholt, T., Andreasen, B., & Krebs, F. C. (2012). Stability of polymer solar cells. Advanced materials, 24(5), 580-612.
[19] Pavlopoulou, E., Fleury, G., Deribew, D., Cousin, F., Geoghegan, M., & Hadziioannou, G. (2013). Phase separation-driven stratification in conventional and inverted P3HT: PCBM organic solar cells. Organic electronics, 14(5), 1249-1254.
[20] Dang, M. T., Hirsch, L., & Wantz, G. (2011). P3HT: PCBM, best seller in polymer photovoltaic research. Advanced Materials, 23(31), 3597-3602.
[21] Brabec, C. J., Cravino, A., Meissner, D., Sariciftci, N. S., Rispens, M. T., Sanchez, L., ... & Fromherz, T. (2002). The influence of materials work function on the open circuit voltage of plastic solar cells. Thin solid films, 403, 368-372.
[22] 洪裕傑,“藉不同酸處理以提高PEDOT: PSS導電性並應用於有機太陽能電池陽極之研究”,中山大學碩士論文, (2013).
[23] Yu, H., Ge, Y., & Shi, S. (2015). Improving power conversion efficiency of polymer solar cells by doping copper phthalocyanine. Electrochimica Acta, 180, 645-650.
[24] Wang, S., Mayo, E. I., Perez, M. D., Griffe, L., Wei, G., Djurovich, P. I., ... & Thompson, M. E. (2009). High efficiency organic photovoltaic cells based on a vapor deposited squaraine donor. Applied Physics Letters, 94(23), 156.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.140.186.241
論文開放下載的時間是 校外不公開

Your IP address is 3.140.186.241
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code