Responsive image
博碩士論文 etd-0619118-174147 詳細資訊
Title page for etd-0619118-174147
論文名稱
Title
煉鋼廠房煙塵逸散之數值模擬與分析
Numerical simulation and analysis of dust emission in steelmaking plant
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-09
繳交日期
Date of Submission
2018-07-21
關鍵字
Keywords
數值模擬、離散相模型、集塵系統、煙塵逸散、電弧爐煙塵
numerical simulation, Dust collecting system, DPM, Dust escape, Electric arc furnace dust
統計
Statistics
本論文已被瀏覽 5643 次,被下載 0
The thesis/dissertation has been browsed 5643 times, has been downloaded 0 times.
中文摘要
煉鋼是有污染的產業之一,其製程會產生大量含重金屬煙塵,若不妥善處理,將會對環境造成莫大傷害。其中最主要的回收方式為集塵系統,依靠一次集塵和二次集塵共同作用,可以收集到大部份的污染廢氣和粉塵,但一些煉鋼廠房之集塵系統設計並不完善,有多少煙塵逸散出廠外,是需要釐清的重點工作之一。
本研究的重點工作為建立三維電爐廠房幾何模型,用以模擬加料期和精煉期產生之廢氣及粉塵在廠內流場的變化。研究中將固定一組操作條件,分別去探討廢氣流量、頂吸流量和廢氣初始溫度對廢氣總逸散率的影響,並且搭配暫態追蹤粒子來描述金屬粉塵顆粒的運動軌跡。
結果顯示電爐廠之二次集塵離爐口太遠,廢氣在上升過程中會跟冷空氣混合造成頂吸抽風口的廢氣濃度較低,導致集塵抽風效率不佳;有倒料桶的情況下,會使堆積在廠頂的廢氣濃度變高,逸散率會比沒倒料桶時還多;此外粉塵在頂吸罩內會有堆積的現象,當堆積濃度提高到二次集塵無法瞬間抽走就會開始往左右兩邊擴散;而擴散的粉塵因終端速度不同,會在廠裡有直徑顆粒大小的分佈,大於40μm的粉塵顆粒會先沉降,小於20μm的粉塵顆粒會在廠頂漂浮最久;而在操作條件下,增加二次集塵風量,可有效改善氣體和粉塵逸散的情形。
Abstract
Steelmaking is a polluting industry, and its process will produce a lot of smoke containing exhaust gas and heavy metal dust particles. If it is not properly handled, it will cause great harm to the environment. The most important recovery method is the dust collection system. Most of the polluting gases and toxic dust can be collected by a combination of dust collection and secondary dust collection. However, the dust collection system design of some steelmaking plants is not perfect. How much dust scattered outside the factory is one of the key tasks that need to be clarified.
This study focuses on the establishment of a geometric model of the 3D EAF building to simulate exhaust gas and dust flow in the plant during the feeding and refining periods. In the study, a set of operating conditions will be fixed, and the effects of exhaust gas flow rate, secondary dust collection flow rate, and exhaust gas initial temperature on the total exhaust gas emission rate will be discussed separately, and transient trajectory particles will be used to describe the trajectories of metal dust particles.
The results show that the secondary dust collection in the electric furnace plant is too far away from the furnace mouth. As the exhaust gas rises, it will mix with the cold air and cause the exhaust gas concentration to decrease, the dust collection efficiency is not high.
In the case of feeding, the concentration of exhaust gas accumulated on the top of the plant will become higher, and the exhaust gas emission rate will be more than when the bucket is not poured. In addition, the dust will accumulate in the dust collecting hood. When the accumulation density is increased until the secondary dust collection cannot be instantaneously taken away, it will begin to spread around. Diffused dust will have a diameter particle size distribution in the factory due to different terminal speeds. Dust particles larger than 40μm will settle first, and dust particles smaller than 20μm will float on the top of the plant for the longest time. In operation condition, increasing the secondary dust collecting air volume can effectively improve the dust and exhaust gas emission.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 iv
圖次 viii
表次 x
符號說明 xi
第一章 緒論 1
1.1 前言 1
1.2 煉鋼廠現況 3
1.2.1 集塵系統介紹 3
1.2.2 電弧爐煉鋼製程 6
1.3 電弧爐粉塵 9
1.3.1 電弧爐粉塵化學成分 9
1.3.2 電弧爐粉塵粒徑分佈 10
1.3.3 電弧爐粉塵密度 12
1.4 研究目的 13
1.5 本文架構 14
第二章 研究方法與數值模型 15
2.1 研究方法 15
2.2 三維電爐廠幾何模型 15
2.3 統御方程式 17
2.3.1 紊流 k-ω SST模型 18
2.3.2 離散項模型(DPM) 20
2.4 電爐廠邊界條件量測與評估 22
2.4.1 電爐廠出入口風量量測 22
2.4.2 電爐廠頂吸流量設定 22
2.5 計算相關設定 25
2.5.1 電爐廢氣性質參數 25
2.5.2 電爐粉塵性質參數 25
2.6 網格模型與收斂標準 27
2.7 電爐廠操作條件 28
第三章 結果與討論 29
3.1 三維電爐廠穩態模擬結果分析 29
3.2 三維電爐廠粉塵顆粒噴吹模擬結果分析 35
3.2.1 電爐噴吹粉塵顆粒運動分佈變化 35
3.2.2 電爐廠二次集塵效率分析 39
第四章 結論與未來展望 42
4.1 結論 42
4.2 未來展望 42
參考文獻 43
參考文獻 References
[1] 陳偉聖,周瑋珊,吳俊毅,申永輝,蔡敏行,“台灣煉鋼集塵灰處理現況”,崑山科技大學,2010
[2] Yunus A.Cengel, John M.Cimbala,“Fluid Mechanics: Fundamentals”,高立圖書有限公司,2006。
[3] Chang, K. C., “Turbulent Flow Combustion in Combustors,” Proceedings of the National Science Council, 2000.
[4] Robert J. WRIGHT,“Concepts of Electric Arc Furnace Fume Control”, National Sun Yat-Sen University,1968.
[5] 朱應波,宋東亮,曾昭生,孟憲勇,胡克畏,“直流電弧爐煉鋼技術”,冶金工業出版社,1997。
[6] 王秋森,陳時欣,鄭曼婷,張艮輝, “氣膠技術學”,新文京出版社,第三版,2016。
[7] Mo, K.H., Alengaram, U.J., Jumaat, M.Z., Yap, S.P.,“ Feasibility study of high volume slag as cement replacement for sustainable structural lightweight oil palm shell concrete,” J. Clean. Prod,2015.
[8] Gomes, H.I., Mares, W.M., Rogerson, M., Stewart, D.I., Burke, I.T, “Alkaline residues and the environment: a review of impacts, management practices, and opportunities.” J. Clean. Prod, 2016.
[9] Pan, H.Y., Zhang, X.H., Wu, J., Zhang, Y.Z., Lin, L.L., Yang, G., Deng, S.H., Li, L., Yu, X.Y., Qi, H., Peng, H, “Sustainability evaluation of a steel production system in China based on energy.” J. Clean. Prod, 2016.
[10] Dutra, A.J.B., Paiva, P.R.P., Tavares, L.M. “Alkaline leaching of zinc from electric arc furnace steel dust.” Min. Eng, 2006.
[11] Salihoglu, G., Pinarli, V. “Steel foundry electric arc furnace dust management: stabilization by using lime and Portland cement.” J. Hazard. Mater, 2008.
[12] Remus, R., Aguado-Monsonet, M.A., Roudier, S., Sancho, L.D., “Best Available Techniques (BAT) Reference Document for Iron and Steel Production,” Industrial Emissions Directive Integrated Pollution Prevention and Control. Publications Office of the European Union, Luxembourg, 2013.
[13] Orhan, G.. “Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium.” Hydrometallurgy, 2005
[14] Menter FR. “two equation k-u turbulence models for aerodynamic flows. In: 24th fluid dynamics conference.” no. AIAA-93-2906, AIAA, Orlando, Florida, , 1993.
[15] Menter FR. “Two-equation eddy-viscosity turbulence models for engineering applications.” AIAA,1994.
[16] Menter F, Esch T. “Elements of industrial heat transfer predictions. In: Proceedings of COBEM 2001, invited lectures16th Brazilian Congress of mechanical engineering”, Brazil,2001.
[17] Morsi, Alexander, “An Investigation of Particle Trajectories in Two-Phase Flow Systems,” Journal Of Fluid Mechanics, 1972.
[18] Chang, K. C., “Turbulent Flow Combustion in Combustors,” Proceedings of the National Science Council, 2000.
[19] Sofilic, T., Rastovcan-Mioc, A., Cerjan-Stefanovic, S., Novosel-Radovi, V., Jenko, M., “Characterization of steel mill electric-arc furnace dust.” J. Hazard. Mater, 2004.
[20] Lis, T., Nowacki, K., Zelichowska, M., Kania, H., “Innovation in metallurgical waste management.” Metalurgija,2015.
[21] Suetens, T., Guo, M., Van Acker, K., Blanpain, B., “Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.” J. Hazard. Mater,2015.
[22] Nolasc-Sobrinho, P.J., Espinosa, D.C.R., Tenorio, J.A.S., “Characterization of dust and sludges generated during stainless steel production in Brazilian industries. Iron make.” Steel make,2003.
[23] 黃亭瑾, “電弧爐煉鋼煙塵風化對濕式除氯之影響”,碩士論文,2007
[24] P.AarneVesilind, “The Rosin-Rammler particle size distribution.”Resource Recovery and Conservation,1980.
[25] Xiaolong Lin, Zhiwei Peng, “Pyrometallurgical recycling of electric arc furnace dust”, Journal of Cleaner Production,2017.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.9.115
論文開放下載的時間是 校外不公開

Your IP address is 3.143.9.115
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code