Responsive image
博碩士論文 etd-0620101-091421 詳細資訊
Title page for etd-0620101-091421
論文名稱
Title
在光纖光柵型的分波多工網路元件中由於 光柵色散所造成的功率償罰之探討
Dispersion-induced Power Penalty In Fiber Bragg Grating-Based DWDM Network Elements
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
46
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-18
繳交日期
Date of Submission
2001-06-20
關鍵字
Keywords
高密度分波多工網路、光纖光柵、色散量測
dispersion, fiber grating, DWDM
統計
Statistics
本論文已被瀏覽 5676 次,被下載 33
The thesis/dissertation has been browsed 5676 times, has been downloaded 33 times.
中文摘要
光波長塞取多工器和光波長交互聯連接器在高密度
波長多工網路中是非常重要的網路元件,它能夠使得網
路更具連接性與重組彈性。以布拉格光纖光柵所建構的
光纖網路元件具有一些優點,如精巧,低插入損失,高
反射率,無非線性效應,極化無關和波長可調性。
在本研究中,我們對一個10 Gb/s信號經過多級串
接的布拉格光纖光柵來量測其功率償罰(power penalty)
對改變波長從反射頻譜的中心到邊緣的關係,我們發現
布拉格光纖光柵的色散量所造成的功率償罰限制了可串
接光纖光柵的數目及限制了可充許波長的變化範圍。
在我們的實驗中,我們使用的布拉格光纖光柵具有0.43
nm 3-dB的頻寬,由實驗結果得知,功率償罰隨著波長
的改變從中心到反射頻譜的邊緣而增加,對於一個布拉
格光纖光柵,當波長調到
Abstract
Optical add/drop multiplexer (OADM) and optical wavelength cross-connect (WXC) are two
key components to enable greater connectivity and flexibility in dense wavelength division
multiplexing (DWDM) networks. Fiber Bragg grating (FBG) based components have several
inherent advantages such as compact, low-insertion loss, high reflectivity, no-linearity
effect, polarization insensitivity and wavelength tunability.
We experimentally investigate the system power penalty induced by the chromatic dispersion
of the FBG as a function of the wavelength detuning of the reflection spectrum for 10 Gb/s
signals, which was reflected by cascade of FBGs. Such power penalty limits the number of
cascaded gratings and restricts the allowable range of wavelength detuning.
In our experiments, we have used several FBG filters with 3-dB bandwidth of 0.43 nm.
According to the experimental results, power penalty increases from the central wavelength
to the edge wavelength of the reflection spectrum. There are 0.4 dB and 7 dB power penalty
for one single FBG and ten cascaded-FBG filter, respectively, when the central wavelength
was detuned to ±0.2 nm and –0.1/+0.14 nm. This study result may give a design guideline of
fiber grating-based optical add-drop multiplexers or optical wavelength cross-connects in DWDM
nodes.


目次 Table of Contents
第一章 緒論
1.1簡介
1.2研究動機
1.3論文結構
第二章 布拉格光纖光柵之工作原理與特性
2.1布拉格光纖光柵特性
2.2布拉格光纖光柵製作
2.2.1干涉儀製作法
2.3.2.相位光罩製作法
2.3各類型光纖光柵比較
2.4光纖光柵的基本特性量測
2.5多級串接光纖光柵的基本特性量測
2.6討論
第三章 光纖光柵的量測技術與比較
3.1光纖色散
3.1-1光纖光柵色散
3.2色散量測法
3.2-1極化分光法3.2-2強度參數量測法
3.2-3相位參數量測法
3.3討論
第四章 系統實驗與結果
4.1量測系統誤碼率的實驗架構圖
4.2串接光纖光柵數目與功率償罰之關係
4.3色散與功率償罰理論分析
第五章 結論
參考文獻
參考文獻 References
1. R. Ramaswami, K. U. Sivarajan, “Optical Networks,” chapter 5, Morgan Kaufmann Publishers, 1998.

2. B. Wang, X. Wu, H. P. Wang, C. C. Sun, and S. H. Xie, “Fiber gratings based optical add/drop multiplexer with low interferometric crosstalk,” Tech. International Conference on Communication ( ICCT’98 ), pp. 5.1~5.5, paper S15.

3. R. J. Pedersen, and B. F. Jorgensen, “Impact of coherent crosstalk on usable bandwidth of a grating-MZI based OADM,” IEEE Photon. Technol. Lett., vol. 10 pp. 558-560, 1998.

4. Y. Tachikawa, Y. Inoue, M. Kawachi, H. Takahashi, and K. Inoue, “Arrayed-waveguide grating add-drop multiplexer with loop-back optical paths,” Electron. Lett., vol. 29, pp. 2133-2134, 1993.

5. Y. K. Chen, and C. C. Lee, “Fiber Bragg grating-based large nonblocking multiwavelength cross-connects,” J. Lightwave Technol., vol. 16, pp. 1746-1756, 1998.

6. X. Wu, Y. Shen, C. Lu, T. H Cheng, and M. K. Rao, “Fiber Bragg grating-based rearrangeable nonblocking optical cross connects using multiport optical circulators,” IEEE Photon. Technol. Lett., vol. 12, pp. 696-698, 2000.

7. K. O. Hill, “Photosensitivity in optical fiber waveguides,” Appl. Phys. Lett., vol. 32, pp. 647-649, 1978.

8. G. Meltz, W. W. Morey and W. H. Glenn, “Formation of Bragg gratings in optical fiber by a transverse holographic method,” Opt. Lett., vol. 14, pp. 823-825, 1989.

9. K. O. Hill, “Bragg grating fabricated in monomode photosensitive optical fiber and by UV exposure through a phase Mask,” Appl. Phys. Lett. vol. 62, pp. 1035-1037, 1993.

10. D. Z. Anderson, “Prouction of in-fiber gratings using a diffractive optical element,” Electron. Lett., vol. 29, pp. 566-568, 1993.

11. A. Othonos and X. Lee, “Novel and improved methods of writing Bragg grating with phase masks,” IEEE Photon. Technol. Lett., vol. 7, pp. 1183-1185, 1995.

12. B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert and K. O. Hill, “Apodised in-fiber Bragg grating reflectors photoimprinted using a phase mask,” Electron. Lett., vol. 31, pp. 223-225, 1995.

13. R. Kashyap, A. Swanton and D. J. Armes, “Simple technique for apodising chirped and unchirped fiber Bragg gratings,” Electron. Lett., vol. 32, pp 1226-1228, 1996.

14. D. K. Lam and B. K. Garside, “Characterization of single-mode optical fiber filters,” Appl. Opt., vol. 20, pp. 440-445, 1981.

15. J. E. Sipe, L. Poladian and C. M. Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. America, vol. 11, pp. 1307-1320, 1994.

16. F. Ouellette and D. Y. Stepanov, “A new technique for measuring the group delay of chirped fiber bragg gratings,” Tech. Dig. 1997 Optical Fiber Communication conference (OFC’97), pp. 153-154, paper Wj1.

17. C. Peucheret, F. Liu and R. J. S. Pedersen, “Measurement of small dispersion values in optical components,” Electron. Lett., vol. 35, pp. 409-411, 1999.

18. E. Simova and P. Berini, “Characterization of chromatic dispersion and polarization sensitivity in fiber gratings,” IEEE Transactions on Instrumentation and Measurement, vol. 48, pp. 939-943, 1999.

19. C. Caspar, H. M. Foisel, C. V. Helmolt, B. Strebel and Y. Sugaya, “Comparison of cascadability performance of different types of commercially available wavelength (de)multiplexers,” Electron. Lett., vol. 33, pp. 1624-1626, 1997.

20. T. Otani, N. Antoniades, I. Roudas and T. E. Sten, “Cascadability of pasband-flattened arrayed waveguide-grating filters in WDM optical networks,” IEEE Photon. Technol. Lett., vol. 11, pp. 1414-1416, 1999.

21. M. Kuznetsov, N. M. Froberg, S. R. Henion and K. A. Rauschenbach, “Power penalty for optical signals due to dispersion slope in WDM filter cascades,” IEEE Photon. Technol. Lett., vol. 11, pp. 1411-1413, 1999.

22. G. P. Agrawal, “Fiber-optic communication systems,” chapter 5, John Wiley & Sons, New York, 1997.

23. M. Sumida, H. Maeda and Y. Tada, “High performance 1 ×2 wavelength selective switch comprising string of 2 ×2 optical switches sandwiching channel-rejection devices,” Electron. Lett., vol. 36, pp. 339-340, 2000.

24. http://www.2cm.com.tw/docs/serial/2/c00211.htm

25. http://tsia.tsc.com.tw/data/report2/12/indu_20001216_2302.htm

26. T. Erdogan, “Fiber grating Spectra,” J. Lightwave Technol., vol. 15, pp. 1277-1294, 1997.

27. G. P. Agrawal, “Fiber-optic communication systems,” chapter 9, John Wiley & Sons, New York, 1997.




電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.32.230
論文開放下載的時間是 校外不公開

Your IP address is 18.223.32.230
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code