Responsive image
博碩士論文 etd-0620101-155415 詳細資訊
Title page for etd-0620101-155415
論文名稱
Title
互連系統區域資料交換效能評估及整體電網模式改善
Inter-Area Data Exchange Performance Evaluation and Complete Network Model Improvement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-01
繳交日期
Date of Submission
2001-06-20
關鍵字
Keywords
通訊網路模擬、錯誤資料處理、整體電網模式、互連系統資料交換、卡曼過濾器、安全性分析、狀態估計、測量值延遲
Communication Network Simulation, Complete Network Model, Inter Control Center Data Exchange, Measurement Delay, Security Analysis, Bad Data Processing, Kalman Filter, State Estimation
統計
Statistics
本論文已被瀏覽 5697 次,被下載 3117
The thesis/dissertation has been browsed 5697 times, has been downloaded 3117 times.
中文摘要
一個區域電網基本上是一個大連接系統的局部,它會受到外界與其連接之網路事故的影響;或因自己網路的事故影響到外界網路,而反饋回來影響到本身的系統,因此整體網路連接系統模式的準確性與否,將會影響輸電系統的分析結果。通常在一個互連的電力系統中,即時網路的安全性評估及電力傳輸容量的計算往往都需要一個即時的整體網路基礎解。為了要正確地評估系統的安全性及互連系統區域間的傳輸容量,由全部區域所傳送的任何有效資料都應被使用。藉由各控制中心間的電腦通訊,即時的遙測資料可在互連系統區域間進行交換以得到整體網路模式。當這些交換資料由不同的區域透過通訊網路被收集在一起,資料因通訊傳輸可能會發生延遲,因此測量值的時間差效應必須考慮在整體網路模式化中。

在本論文中,我們對於整體網路模式的建立提供幾個建議作為系統運轉參考。在資料交換方面,我們使用離散事件模擬技術來評估使用網際網路連接各公司的監控系統作為資料交換的傳輸效能,並建立網際網路資料交換傳輸延遲量化分析模式。藉由預測方式的使用可將資料交換的時間差效應最小化,這樣的結果將使狀態估計提供互連系統精確的即時整體網路模式解,作為系統安全性及可用傳輸容量分析使用。

為了克服測量值資料的隨機延遲效應,並建立一個更精確的網路安全性及傳輸容量計算所需的基礎解,本論文發展出一個隨機統計的延伸卡曼濾波器演算法,當互連系統中發生部分或全部測量值有時間延遲的情形時,使用這個演算法可得到最佳的系統狀態解。最後為了要得到整體網路精確的估計解,在網路模式中必須要有偵測錯誤資料的能力。我們提出了一個以隨機統計延伸卡曼濾波器演算法為基礎的資料除錯方法,藉由這個方法可以有效地偵測、分辨及移除錯誤的資料。
Abstract
A power system is typically one small part of a larger interconnected network and is affected to a varying degree, by contingencies external to itself as well as by the reaction of external network to its own contingencies. Thus, the accuracy of a complete interconnected network model would affect the results of many transmission level analyses. In an interconnected power system, the real-time network security and power transfer capability analyses require a “real-time” complete network base case solution. In order to accurately assess the system security and the inter-area transfer capability, it is highly desirable that any available information from all areas is used. With the advent of communications among operations control center computers, real-time telemetered data can be exchanged for complete network modeling. Measurement time skew should be considered in the complete network modeling when combining large area data received via a data communication network.

In this dissertation, several suggestions aiming toward the improvement of complete network modeling are offered. A discrete event simulation technique is used to assess the performance of a data exchange scheme that uses Internet interface to the SCADA system. Performance modeling of data exchange on the Internet is established and a quantitative analysis of the data exchange delay is presented. With the prediction mechanisms, the effect of time skew of interchanged data among utilities can be minimized, and consequently, state estimation (SE) could provide the accurate real-time complete network models of the interconnected network for security and available transfer capability analyses.

In order to accommodate the effects of randomly varying arrival of measurement data and setup a base case for more accurate analyses of network security and transfer capability, an implementation of a stochastic Extended Kalman Filter (EKF) algorithm is proposed to provide optimal estimates of interconnected network states for systems in which some or all measurements are delayed. To have an accurate state estimation of a complete network, it is essential to have the capability of detecting bad data in the model. An efficient information debugging methodology based on the stochastic EKF algorithm is used for the detection, diagnosis and elimination of bad data.
目次 Table of Contents
摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 VIII
符號表 IX

第一章 簡介 1
第二章 網際網路資料交換模擬分析 10
2.1 電腦系統模擬 11
2.2 問題描述 14
2.3 系統模式建立 17
第三章 以狀態估計為基礎之整體電網模式建立 22
3.1 外界網路測量值修正 22
3.1.1 線性外插法 23
3.1.2 指數平滑法 24
3.2 動態狀態估計法 27
第四章 考慮隨機延遲測量值之互連區域狀態估計 32
4.1 問題描述與數學表示式 33
4.2 隨機狀態估測器之推導 36
第五章 以隨機動態狀態估計法為基礎之錯誤資料偵測與識別 44
5.1 錯誤資料之偵測與分類 44
5.2 測量值錯誤之識別與修正 49
5.3 網路結構錯誤之識別與修正 50
第六章 測試結果與討論 56
6.1 網際網路傳輸資料模擬結果與預測模式準確性比較 56
6.2 隨機動態狀態估計法與傳統狀態估計法執行效能比較 64
6.3 外界網路錯誤資料之偵測與修正測試結果 71
第七章 結論及未來研究方向 79
參考文獻 83
參考文獻 References
[1] N. J. Balu, T. Bertram, A. Bose, V. Brandwajn, D. Curtice, A. Fouad, L. H. Fink, B. F. Wollenberg and J. N. Wrubel, “On-line power system security analysis,” Proceedings the IEEE, Vol. 80, No. 2, February 1992, pp. 262-280.
[2] M. D. Ilic, Y. T. Yoon, and A. Zobian, “Available transmission capacity (ATC) and its value under open access,” IEEE Trans. on Power Systems, Vol. 12, No. 2, May 1997, pp. 636-645.
[3] G. C. Ejebe, J. Tong, J. G. Frame, X. Wang, and W. F. Tinney, “Available transfer capability calculations,” IEEE Trans. on Power Systems, Vol. 13, No. 4, October 1997, pp. 1521-1527.
[4] P. W. Sauer, “Technical challenges of computing available transfer capability (ATC) in electric power systems,” 30th Hawaii International Conference on System Science, Maui, Hawaii, January 1997.
[5] J. C. O. Mello, A .C. G. Melo, and S. Granville, “Simultaneous transfer capability assessment by combining interior point methods and Monte Carlo simulation,” IEEE Trans. on Power Systems, Vol. 12, No. 2, May 1997, pp. 736-742.
[6] T. Devaney and G. Cauley, “Results of user survey: functional and information needs for a transaction management system market interface,” available from http://www.tsin.com/docs.html.
[7] North American Electric Reliability Council (NERC), Available Transfer Capability Definitions and Determination, June 1996.
[8] NERC ATCWG Report on “Review of regional implementation of the ATC determination procedures and their compliance with NERC principles” approved by the NERC Engineering Committee, March 1999.
[9] NERC ATCWG Report on “Pilot program to assess the feasibility of ATC commercial viability indices” approved by NERC Engineering and Operating Committees, November 1998.
[10] EPRI, Simultaneous Transfer Capability: Direction for Software Development, Report EL-7351, January 1991.
[11] North American Electric Reliability Council, Regional Compliance with NERC’s 1996 “Available transfer capability definitions and determination,” Report, Princeton, N. J., July 1997.
[12] K. A. Clements, O. J. Denison and R. J. Ringlee, “The effects of measurement non-simultaneity, bias, and parameter uncertainty on power system state estimation,” Proceedings of the 1974 Power Engineering Society PICA Conference, pp. 327-331.
[13] S. Deckmann, A. Pizzolante, A. Montincelli, B. Stott, and A. Alsac, “Numerical testing of power system load flow equivalents,” IEEE Trans. on Power Apparatus and Systems, Vol. 99, No. 6, November/December 1980, pp. 2292-2300.
[14] J. F. Dopazo, M. H. Dwarakanath, J. J. Li and A. M. Sasson, “An external equivalent model using real-time measurements for system security evaluation,” IEEE Trans. on Power Apparatus and Systems, Vol. 96, No. 2, March 1977, pp. 431-436.
[15] A. Monticelli, S. Deckmann, A. Garcia and B. Stott, “Real-time external equivalents for static security analysis,” IEEE Trans. on Power Apparatus and Systems, Vol. 98, No. 2, March/April 1979, pp. 498-508.
[16] J. F. Dopazo, G. Irisarri and A. M. Sasson, “Real-time external system equivalent,” IEEE Trans. on Power Apparatus and Systems, Vol. 98, No. 6, November 1979, pp. 2153-2171.
[17] E. Housos and G. Irisarri, “Real-time results with on-line network equivalents for control center applications,” IEEE Trans. on Power Apparatus and Systems, Vol. 100, No. 12, December 1981, pp. 4830-4837.
[18] R. A. M. Van Amerongen and H. P. Van Meeteren, “A generalized ward equivalent for security analysis,” IEEE Trans. on Power Apparatus and Systems, Vol. 101, No. 6, June 1982, pp. 1519-1526.
[19] F. L. Alvarado, “Determination of external system topology errors,” IEEE Trans. on Power Apparatus and Systems, Vol. 100, No. 11, November 1981, pp. 4553-4561.
[20] C. N. Lu, J. H. Teng and B. S. Chang, “Power system network topology error detection,” IEE Proceedings – Generation, Transmission and Distribution, Vol. 141, No. 6, November 1994, pp. 623-629.
[21] K. I. Geisler and A. Bose, “ State estimation based external network solution for on-line security analysis,” IEEE Trans. on Power Apparatus and Systems, Vol. 102, No. 8, August 1983, pp. 2447-2454.
[22] A. Bose, “The effects of external modeling errors on on-line security analysis,” IEEE Trans. on Power Systems, Vol. 1, No. 1, February 1986, pp. 227-232.
[23] K. I. Geisler and N. K. Tripathi, “State estimation based external network solutions: field testing,” IEEE Trans. on Power Apparatus and Systems, Vol. 104, No. 8, August 1985, pp. 2126-2132.
[24] C. N. Lu, R. C. Leou, K. C. Liu and M. Unum, “A load flow and fuzzy linear programming based external network modeling approach,” IEEE Trans. on Power systems, Vol. 9, No. 3, August 1994, pp. 1293-1301.
[25] W. L. Snyder Jr., S. Vemuri, A. D. Papalexopoulos, M. L. Oatts, G. C. Contaxis, J. Singh, R. A. Smith and S. C. Savulescu, “External network modeling-recent practical experience,” IEEE Trans. on Power Systems, Vol. 9, No. 1, February 1994, pp. 216-225.
[26] K. Abdel-Rahman, L. Mili, A. G. Phadke, J. De La Ree and Y. Liu, “Internet based wide area information sharing and its roles in power system state estimation,” Proceedings of the IEEE PES Winter Meeting, Columbus, Ohio USA, 28 January-1 February, 2001.
[27] P. Bonanomi and G. Gramberg, “Power system data validation and state calculation by network search techniques,” IEEE Trans. on Power Apparatus and Systems, Vol. 102, No. 1, 1983, pp. 238-249.
[28] R. L. Lugtu, D. F. Hackett, K. C. Liu and D. D. Might, “Power system state estimation: detection of topology errors,” IEEE Trans. on Power Apparatus and Systems, Vol. 99, No. 6, November/December 1980, pp. 2046-2412.
[29] K. A. Clements and P. W. Davis, “Detection and identification of topological errors in electric power systems,” IEEE Trans. on Power Systems, Vol. 3, No. 4, November 1988, pp. 1748-1753.
[30] F. F. Wu and W. H. E. Liu, “Detection of topology errors in power system state estimation,” IEEE Trans. on Power Systems, Vol. 4, No. 1, February 1989, pp. 176-183.
[31] A. Simoes Costa and J. A. Leao, “Identification of topology errors in power system state estimation,” Proceedings of the IEEE Winter Power Meeting, 1993.
[32] M. F. Allan and A. M. H. Rashed, “Power system topology error detection and identification,” International Journal of Electrical Power and Energy Systems, Vol. 2, No. 4, 1980, pp. 201-205.
[33] N. Singh and H. Glavitsch, “Detection and identification of topology errors in on-line power system analysis,” IEEE Trans. on Power Systems, Vol. 6, No. 1, 1991, pp. 324-331.
[34] N. Singh and F. Oesch, “Practical experience with rule-based on-line topology error detection,” Proceedings of the IEEE Power Industry Computer Application Conference, Scottsdale, Arizona, 1993, pp. 306-312.
[35] A. Bose and K. A. Clements, “Real-time modeling of power systems,” Proceedings of the IEEE, 1987, pp. 1607-1622.
[36] M. Sahba, “A method for plausibility checks and data validation in power systems,” IEEE Trans. on Power Systems, Vol. 3, No. 1, February 1988, pp. 267-271.
[37] F. Aboytes and B. J. Cory, “Identification of measurement, parameter and configuration errors in static state estimation,” Proceedings of 9th Power Industry Computer Applications Conference, New Orleans, 1975, pp. 298-302.
[38] A. M. Leita Da Silva, M. B. Do Coutto Filho and J. F. de Queiroz, “State forecasting in electric power systems,” IEE Proceedings – Generation, Transmission and Distribution, Vol. 130, No. 5, September 1983, pp. 237-244.
[39] A. M. Leita Da Silva, M. B. Do Coutto Filho and J. M. C. Cantera, “An efficient dynamic state estimation algorithm including bad data processing,” IEEE Trans. Power Systems, Vol. 2, No. 4, November 1987, pp. 1050-1058.
[40] K. Nishiya, J. Hasegawa and T. Koike, “Dynamic state estimation including anomaly detection and identification for power system,” IEE Proceedings – Generation, Transmission and Distribution, Vol. 129, No. 5, September 1982, pp. 192-198.
[41] M. B. Do Coutto Filho, A. M. Leite da Silva and R. A. da Silva, “Information debugging for real-time power systems monitoring,” IEE Proceedings – Generation, Transmission and Distribution, Vol. 136, No. 3, May 1989, pp. 145-152.
[42] H. Kim and A. Abur, “Enhancement of external system modeling for state estimation,” IEEE Trans. on Power Systems, Vol. 11, No. 3, August 1995, pp. 1380-1386.
[43] A. F. Vojdani, C. F. Imparato, N. K. Saini, B. F. Wollenberg, H. H. Happ, “Transmission access issues,” IEEE Trans. on Power Systems, Vol. 11, No. 1, February 1996, pp. 41-49.
[44] I. Dabbaghchi and L. S. VanSlyck, “Inter-utility data exchange for state estimation,” IEEE Trans. on Power Systems, Vol. 3, No. 3, August 1988, pp. 1254-1261.
[45] K. Kato, I. Dabbaghchi, J. K. Robinson, J. Singh and R. A. Smith, “Real-time data exchange for on-line security assessment,” IEEE Trans. on Power Systems, Vol. 7, No. 3, August 1992, pp.1322-1328.
[46] Z. Sumic, “The role of Internet in the re-regulated utility industry,” Paper No. VFB. 6/2 98033, Distributech ’98 Conference and Exhibition, Tampa, Florida, 1998, pp. 108-116.
[47] R. van der Meulen, “New technologies for distributed measurement and control,” Paper No. VFB. 6/3 98005, ibid, pp. 117-124.
[48] Y. Serizawa, K. Shimizu and F. Fujikawa, “ATM transmissions of microprocessor-based current differential teleprotection Signals,” IEEE Trans. on Power Delivery, Vol. 14, No. 2, April 1999, pp. 335-341.
[49] H. Doi, Y. Serizawa, H. Tode and H. Ikeda, “Simulation study of QoS guaranteed ATM transmission for future power system communication,” IEEE Trans. on Power Delivery, Vol. 14, No. 2, April 1999, pp. 342-348.
[50] P. G. Harrison and N. M. Patel, Performance Modeling of Communication and Computer Architecture, Addison-Wesley Publishing Co. 1993.
[51] Tutorial for COMNET III, CACI products company.
[52] Jerry Banks and Carson S. John, Discrete-event System Simulation, Prentice-Hall, c1984.
[53] Drew Heywood, Microsoft TCP/IP and Communication Network, New-Riders Co. 1998.
[54] S. Makridakis and S. C. Wheelwright, Forecasting Methods and Applications, Second Edition, John Wiley & Sons, Inc. 1983.
[55] B. L. Bowerman and R. T. O’Connell, Forecasting and Time Series: An Applied Approach, Third Edition, Wadsworth, Inc. 1993.
[56] A. S. Debs and R. E. Larson, “A dynamic estimator for tracking the state of a power system,” IEEE Trans. on Power Apparatus and Systems, Vol. 89, No. 7, September/October 1970, pp. 1670-1678.
[57] J. K. Mandal, A. K. Sinha and L. Roy, “Incorporating nonlinearities of measurement function in power system dynamic state estimation,” IEE Proceedings – Generation, Transmission and Distribution, Vol. 142, No. 3, May 1995, pp. 289-296.
[58] R. D. Massiello and F. C. Schweppe, “A tracking static state estimator,” IEEE Trans. on Power Apparatus and Systems, Vol. 90, March/April 1971, pp. 1025-1033.
[59] D. M. Falcao, P. A. Cooke and A. Brameller, “Power system tracking state estimator and bad data processing,” IEEE Trans. on Power Apparatus and Systems, Vol. 101, No. 2, February 1982, pp. 325-333.
[60] K. Kato, Discussion to [44], IEEE Trans. on Power Systems, Vol. 3, No. 3, August 1988, pp. 1261.
[61] B. Hoveida and H. Amelink, Discussion to [44], IEEE Trans. on Power Systems, Vol. 3, No. 3, August 1988, pp. 1261.
[62] R. C. Leou and C. N. Lu, “Adjustment of the external network’s measurements and its effect on the power mismatch analysis,” Proceedings of the IEEE Industry Application Society Annual Meeting, 1999, pp. 2072-2076.
[63] A. Ray, L. W. Liou and J. H. Shen, “State Estimation Using Randomly Delayed Measurements,” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 115, March 1993, pp. 19-26.
[64] Y. Halevi and A. Ray, “Integrated communication and control systems: Part I-Analysis,” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 110, December 1988, pp. 367-373.
[65] A. Ray and Y. Halevi, “Integrated communication and control systems: Part II-Design Considerations,” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 110, December 1988, pp. 374-381.
[66] J. M. Parr and C. L. Philips, “State estimation from retarded measurements,” Proceedings of the 1989 Southeastcon Conference, 89CH2674-5, pp. 1275-1280.
[67] E. Handschin, F. C. Schweppe, J. Kohlas and A. Fiechter, “Bad data analysis for power system state estimation,” IEEE Trans. on Power Apparatus and Systems, Vol. 94, No. 2, March/April 1975, pp. 329-337.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code