Responsive image
博碩士論文 etd-0620101-190653 詳細資訊
Title page for etd-0620101-190653
論文名稱
Title
氯離子及導線架氧化銅對塑膠封裝可靠度之影響
The Effect of Chloride Ion and Copper Oxide Layer on Plastic-encapsulated Package Reliability
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-12
繳交日期
Date of Submission
2001-06-20
關鍵字
Keywords
氧化銅、導線架、微接點、氯、鋁、金、封裝
lead frame, golden, chloride, wire bonding, aluminum, package, copper oxide
統計
Statistics
本論文已被瀏覽 5835 次,被下載 0
The thesis/dissertation has been browsed 5835 times, has been downloaded 0 times.
中文摘要
  塑膠封裝(Plastic packaging)是目前最普遍、快速且經濟的電子構裝方式,目的在保護元件線路、防止外力的損害。本實驗所探討為氯離子對封裝體內金鋁微接點(Wire bonding)所造成影響之顯微組織分析,以及導線架(Lead frame)上氧化銅成長對封裝體黏著強度的影響兩部份。
  在氯離子對金鋁微接點之影響的研究方面,實驗利用NaCl作為氯離子的來源,藉著高溫可靠度測試(HTSL, High Temperature Storage Life)及高壓水氣測試(PCT, Pressure Cooker Test)加速氯離子反應,並以掃描式電子顯微鏡(SEM)與電子微探儀(EPMA)WDS定性定量分析來觀察氯離子與金鋁介金屬化合物(Intermetallic compound)間的反應,以釐清微接點受到破壞的反應機制。實驗發現氯離子的存在將導致介金屬化合物Au4Al產生劇烈的退化反應而形成結構鬆散的富鋁組織,並從中產生裂縫(crack)而導致微接點的失效。
  在氧化銅成長對黏著強度影響的研究方面,實驗利用1%、3%、20%氧分壓之高溫氣氛爐處理不同材質之導線架,並使用電化學方法量測氧化層厚度,以定義不同狀態下導線架表面氧化層的成長行為,並利用推力測試來觀察氧化層厚度與黏著強度間的關係。實驗結果發現,在低氧分壓下(<3%),氧化速率將隨著氧分壓的增加而快速上升,而在高氧分壓下(>3%),氧分壓的增加僅使氧化速率緩慢地上升。黏著強度則隨著氧化層厚度的增加而先升後降,最大強度落於氧化層厚度15~25nm處。
Abstract
None
目次 Table of Contents
壹、前言 1
1-1 研究背景 1
a. 微接點的重要性 1
b. 金鋁微接點的接合方式 1
c. Au-Al間介金屬化合物的成長機制 2
1-2 氯離子的腐蝕分析 3
a. 氯離子的來源 3
b. 氯離子對Al-pad的腐蝕行為 4
1-3 導線架表面氧化層對可靠度的影響 4
a. 氧化層厚度與黏著強度的關係 5
b. 氧化層的成長行為 6
c. 導線架與封裝樹脂間的破壞機制 7
貳、實驗方法 8
2-1氯離子對微接點金鋁接合部的影響 8
a. 實驗目的 8
b. 試片分類及時效處理 8
c. 試片製作 9
d. 試片分析 10
2-2 銅導線架上氧化層成長行為之影響 10
a. 實驗目的 10
b. 試片分類與高溫處理 11
c. 試片分析 12
參、結果 15
3-1氯離子對微接點金鋁接合部的影響 15
a. 未加入氯離子之金鋁微接點間介金屬相變化分析 15
b. 氯離子於翻球試片上的作用 16
c. 氯離子對微接點內部所造成的影響 17
3-2 銅導線架上氧化層成長行為之影響 17
a. 電化學還原反應曲線 17
b. 不同條件下之氧化層成長行為 18
c. 氧化層厚度與黏著強度關係 18
肆、討論 20
4-1氯離子對微接點金鋁接合部的影響 20
a. 遭受氯離子侵蝕之金鋁微接點間介金屬相變化分析 20
b. 遭受退化之介金屬相分析 21
c. 氯離子對Au4Al Phase的反應機制 22
d. 遭受退化之介金屬相對可靠度所造成的影響 23
4-2 銅導線架上氧化層成長行為之影響 23
a. 不同氧分壓下之氧化層成長行為 23
b. 封裝樹脂與導線架間的破壞機制 26
c. 導線架表面顯微結構分析 28
d. 導線架表面微量元素之行為 28
伍、結論 30
陸、參考文獻 32

表目錄
Table 1 試片編號及試片種類與時效處理之安排 35
Table 2 各種導線架之主要成份 36
Table 3 實驗排定之氧分壓-烘烤時間對照表 36

圖目錄
Fig.1 Plastic package assembly process 37
Fig.2 Au-Al binary phase diagram 38
Fig.3 背向散射電子、二次電子、X光及歐傑電子,其範圍及空間分佈情形與產生X光及歐傑電子過程之示意圖 39
Fig.4 氣氛爐示意圖 40
Fig.5 電解還原設備示意圖 40
Fig.6 剪力測試示意圖 41
Fig.7 01T175N試片經短期高溫時效處理後之 (a) Cross section (b) Ball bond surface morphology 42
Fig.8 01T175N試片經長期高溫時效處理後之Cross sectionmorphology 43
Fig.9 03T175N試片經短/長期高溫時效處理後之Cross section morphology 44
Fig.10 (a)01T175N (b)03T175N 試片之介金屬化合物相變化示意圖 45
Fig.11 01T175Cl試片經(a) 144小時 (b) 672小時高溫時效處理後之Ball bond/Bond pad surface morphology 46
Fig.12 03T175Cl試片經168小時高溫時效處理後之(a) Ball bond (b) Bond pad surface morphology 47
Fig.13 (a) 01T175ClH (b) 03T175ClH 試片經336小時高溫時效處理後之 BEI/SEI Cross section morphology 48
Fig.14 K Type導線架經(a)175℃, 1%O2, 180min (b)175℃, 20.8%O2, 60min高溫烘烤後之電化學還原電位-時間曲線圖 49
Fig.15 不同材質導線架於(a)1% (b)3% (c)20.8% 氧分壓下之氧化層厚度-時間關係 50
Fig.16 (a)A Type (b)C Type (c)K Type導線架之黏著強度-氧化層厚度關係 51
Fig.17 不同導線架於175℃,1%氧分壓環境下之氧化層厚度-黏著強度關係圖 52
Fig.18 (a)01T175Cl (b)01T175ClH試片經高溫時效處理後之BEI/SEI Cross section morphology及Au, Al, Cl元素WDS mapping 53
Fig.19 03T175Cl試片經短期高溫時效處理後之BEI/SEI Cross section morphology及Au, Al, Cl元素WDS mapping 54
Fig.20 03T175Cl試片經長期高溫時效處理後之BEI/SEI Cross section morphology及Au, Al, Cl元素WDS mapping 55
Fig.21 (a)01T175Cl (b)03T175Cl 試片之介金屬化合物相變化示意圖 56
Fig.22 03T175Clt120h試片之WDS成份定量分析 57
Fig.23 03T175Nt48h試片再經NaCl溶液及100℃時效處理48小時後之BEI/SEI Cross section morphology及Au, Al, Cl元素WDS mapping 58
Fig.24 03T175ClH試片經高溫時效處理48小時後之BEI/SEI Cross section morphology及Au, Al, Cl元素WDS mapping 59
Fig.25 因退化而導致Crack之SEI Cross section surface morphology 60
Fig.26 175℃, 不同氧分壓環境下氧化層成長厚度-時間關係圖 61
Fig.27 175℃, 1%氧分壓之氧化層厚度-時間關係與Shimizu之烘箱實驗結果比較圖 62
Fig.28 (a)Cu2O (b)CuO於175℃不同氧分壓環境下之氧化層厚度-時間關係圖 63
Fig.29 不同破壞機制下,已/未受樹脂剝離之導線架電化學曲線比較圖 64
Fig.30 三種導線架之氧化層厚度-黏著強度-破壞機制關係比較圖 65
Fig.31 A Type/ K Type 導線架於不同狀態下之SEM表面顯微影像 66
Fig.32 K Type 導線架所含微量元素之EPMA定性量測 67

參考文獻 References
1.Sung K. Kang, “ Gold-to-Aluminum Bonding for TAB Applications “, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.15, No.6, pp. 998-1003, 1992.
2.George G. Harman, “ Wire Bonding in Microelectronics Materials, Processes, Reliability, and Yield “, Second Edition, McGraw-Hill, New York, 1997.
3.T. Uno, K. Tataumi, and Y. Ohno, “ Voids Formation and Reliability in Gold-Aluminum Bonding “, Proceedings of the Joint ASME/JSME Advances in Electronic Packaging, Vol.1-2, pp. 771-777, 1992.
4.V. Koeninger, H. H. Uchida, and E. Fromm, “ Degradation of Gold- Aluminum Ball Bond by Aging and Contamination “, IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, Vol.18, No.4, pp. 835-841, 1995.
5.K. I. Johnson, M. H. Scott, and D. A.. Edson, “ Ultrasonic Wire Welding “, Solid State Technology, Part II, Ball-Wedge Wire Welding, Vol.20, No.4, pp. 91-95,1977.
6.T. J. Rossiter, “ Ambient Effects on Gold-Aluminum Bonds “, Proceedings Annual Reliability Physics symposium, pp. 186-190, 1970.
7.E. Philofsky, “ Intermetallic Formation in Gold-Aluminum System “, Solid State Electronics, Vol.13, pp. 1391-1399, 1970.
8.Guy V. Clatterbaugh, Joel A. Weiner, and Harry K. Charles, “ Gold- Aluminum Intermetallic : Ball Bond Shear Test and Thin Film Reaction Couples “, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.CHMT-7, No.4, pp. 349-356, 1984.
9.Tom Raymond, “ Avoiding Bond Pad Failure Mechanisms in Au-Al Systems “, Semiconductor International, Vol.12, No.10, pp. 152-158, 1989.
10.Da-Yuan Shin, and Peter J. Ficalora, “ The Reliability of Au-Al Intermetallic Formation and Electromigration in Hydrogen Environment “, IEEE Transactions on Electron Devices, Vol. ED-26, No.1, pp. 27-34, 1979.
11.Suresh Kumar, Frank Wulff, and Klaus Dittmer, “ Degradation of Small Ball Bond due to Intermetallic Phase (IP) Growth “, K&S Packaging Materials.
12.Nakane et al, “ Fundamental Study for Microjoining in LSI “, Journal of High Temperature Society, Vol.13, pp.248-255, 1987.
13.J. F. Graves, and W. Gurany, “ Reliability Effects of Fluorine Contamination of Aluminum Bonding Pads on Semiconductor Chips “, Solid state Technology, Vol.26, No10, pp.227-232, 1983.
14.H. Y. Ueng, and C. Y. Liu, “ The Aluminum Bond-Pad Corrosion in Small Outline Packaged Devices “, Materials Chemistry and Physics, Vol.48, pp. 27-35, 1997.
15.Michael Pecht, “ A Model for Moisture Induced Corrosion Failures in Microelectronic Packages “, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.13, No.2, pp. 383-389, 1990.
16.Melanie Iannuzzi, “ Bias Humidity Performance and Failure Mechanisms of Nonhermetic Aluminum SIC’s in an Environment Contaminated with Cl2 “, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.CHMT-6, No.2, pp. 191-201, 1983.
17.John K. Hagge, and Robert C. Camilletti, “ Hermetic-Equivalent Packaging of GPS MCM-L Modules for High Reliability Avionics Applications “, IEEE Transactions on Advanced Packaging, Vol.22, N0.2, pp. 145-152, 1999.
18.Z. A. Foroulis, and M. J. Thubrikar, “ On the Kinetics of Breakdown of Passivity of Preanodized Aluminum by Chloride Ions “, Journal of the Electrochemical Society, Vol.122, pp. 1296-1301, 1975.
19.A. G. Muñoz, and J. B. Bessone, “ Pitting of Aluminum in Non- aqueous Chloride Media “, Corrosion Science, Vol.41, pp. 1447-1463, 1999.
20.G. M. Scamans, and A. S. Rehal, “ Electron Metallography of the Aluminum-Water Vapour Reaction and Its Relevance to Stress- Corrosion Susceptibility “, Journal of Materials Science, Vol.14, pp. 2459-2470, 1979.
21.Takashi Uchida, Hidemitsu Aoki, Masami Hane, Shinya Hasegawa, and Eiji Ikawa, “ Model for Al Etch-Rate Enhancement at Low Temperatures “, Japanese Journal of Applied Physics Part 1, Vol.32, No.12B, pp. 6095-6101, 1993.
22.A. O. Tay, and Tingyu Lin, “ Moisture Diffusion and Heat Transfer in Plastic IC Packages “, IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, Vol.19, No.2, pp. 186-193, 1996.
23.Laurene Yip, “ Moisture Sensitivity and Reliability of Plastic Thermally Enhanced QFP Packages “, IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol.18, No.3, pp. 485-490, 1995.
24.Sheng Liu, and Yuhai Mei, “ Behavior of Delaminated Plastic IC Packages Subjected to Encapsulation Cooling, Moisture Absorption, and Wave Soldering “, IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, Vol.18, No.3, pp. 634-645, 1995.
25.Soon-Jin Cho, Kyung-Wook Paik, and Young-Gil Kim, “ The Effect of Oxidation of Cu-Base Leadframe on the Interface Adhesion Between Cu Metal and Epoxy Molding Compound “, IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol.20, No.2, pp. 167-175, 1997.
26.Hee Yeoul Yoo, and Kanako Sawada, “ Optimal Oxidation Control for Enhancement of Copper Lead feame-EMC Adhesion in Packaging Process “, IEEE Electronic Components and Technology Conference, pp.1148-1153, 1998.
27.Shin-ya Shimizu, and Hee Yeoul Yoo, “ The Oxidation Control of Copper Leadframe Package for Prevention of Popcorn Cracking “, IEEE Electronic Components and Technology Conference, pp. 78-83, 1997.
28.H. Kim, and J. Jang, “ Corrosion Protection and Adhesion Promotion for Polyimide/Copper System Using Silane-Modified Polymeric Materials ”, Polymer, Vol .41, No.7, pp. 6553-6561, 2000.
29.B. J. Love, and P. F. Packman, “ The Contribution of Morphological and Surface Chemical Modifications to The Elevated-Temperature Ageing of Copper-Epoxy Interfaces ”, Journal of Materials Science, Vol.33, pp. 1359-1367, 1998.
30.Charles Lee, Wolfgang Hoesler, Rolf von Criegern, and Arvind Parthasarathi, “ A Novel High Performance Adhesion Enhancing Zn-Cr Leadframe Coating for Popcorn Prevention ” IEEE Transaction on Advanced Packaging, Vol.22, No.3, pp. 398-406, 1999.
31.H. Y. Lee, and Jin Yu, “ Adhesion Strength of Leadframe/EMC Interfaces “, Journal of Electronic Materials, Vol.28, No.12, pp. 1444-1447, 1999.
32.B. R. Rogers, and James A. Sellers, “ X-ray Photoelectron Spectroscopy Characterization of Oxidation of Electroplated and Sputter Deposited Copper Surfaces “, Journal of Vacuum Science & Technology. an Official Journal of the American Vacuum Society. A, Vacuum, Surfaces, and Films, Vol.16, No.3, pp. 1227-1232, 1998.
33.F. M. Pan, S. R. Horng, T. D. Yang, and V. Tang, “ Studies of the Interface Between the Epoxy Molding Compound and the Copper Leadframe by X-ray Photoelectron Spectroscopy, Auger Electron Spectroscopy, and Secondary Electron Microscopy “, Journal of Vacuum Science & Technology. an Official Journal of the American Vacuum Society. A, Vacuum, Surfaces, and Films, Vol.8, No.6, pp. 4074-4078, 1990.
34.Henning Bubert, Monika Korte, Rainer P. H. Garten, Erhard Grallath, and Marek Wielunski, “ Application of Factor Analysis in Electron Spectroscopic Depth Profiling on Copper Oxide “, Analytica Chimica Acta, Vol.297, pp. 187-195, 1994.
35.Y. Austin Chang, Ker-Chang Hsieh, “Phase Diagrams of Ternary Copper- Oxygen-Metal Systems “, ASM INTERNATION, 1989
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 100.26.35.111
論文開放下載的時間是 校外不公開

Your IP address is 100.26.35.111
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code