Responsive image
博碩士論文 etd-0620102-192209 詳細資訊
Title page for etd-0620102-192209
論文名稱
Title
多層高速數位電路板中接地彈跳雜訊對電源品質及其電磁輻射效應之模擬與量測
Effect of Ground Bounce Noise on the Power Integrity and EMI Performance in Multi-Layered High-Speed Digital PCB: FDTD Modeling and Measurement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
52
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-14
繳交日期
Date of Submission
2002-06-20
關鍵字
Keywords
時域有限差分法、訊號品質、電磁輻射、接地彈跳雜訊、動力面、連通柱
Ground Bounce Noise, Power Plane, Finite-Difference Time-Domain, Via, Signal Integrity, Electromagnetic Interference
統計
Statistics
本論文已被瀏覽 5876 次,被下載 6805
The thesis/dissertation has been browsed 5876 times, has been downloaded 6805 times.
中文摘要
在本論文中,我們對於高速數位印刷電路板電磁效應作三部份探討:在第一部份,利用時與有限差分法(Finite-Difference Time Domain),研究在動力面(Power Plane)作狹縫切割並用通道連結,對於接地彈跳雜訊(Ground Bounce Noise)所造成的電磁輻射效應的影響。我們發現在雜訊四周切割狹縫可以有效減低雜訊,但是當在狹縫兩邊作通道連結時,將會顯著降低電磁輻射防護效果;第二部分探討在多層印刷電路板中,動力面間雜訊藉由連通柱(Via)耦合的時域與頻域效應。利用在動力面間切割狹縫雖然可以在高頻處有效抑制雜訊耦合效應,但是在低頻處將會激發新的共振模態,利用觀察動力面間的電流分布圖可以幫助我們了解此現象,在最後一部分,我們利用FDTD連結SPICE的模擬方法,可以有效預測主動元件在印刷電路板上所造成的電磁效應。
Abstract
In this thesis, we study the electromagnetic effect of the high-speed digital PCB in three sections. In first section, based on the FDTD modeling approach, the bridging effect of the isolation moat on the EMI caused by the ground bounce noise is investigated. We find that isolating the noise source by slits is effective to eliminate the EMI, but bridges connecting between two sides of the slits will significantly degrade the effect of EMI protection. In second section, we investigate both in time and frequency domains the power plane noise coupling to signal trace with via transition in multi-layered PCB. Separating the power plane with slits is effective in reducing noise coupling in high frequency but a new resonant mode will be excited at lower frequency. Current distribution pattern of this new resonant mode between the power planes helps us to understand this phenomenon more clearly. In final section, by using FDTD link SPICE method, we can predict the electromagnetic behavior of the PCB with active device effectively.
目次 Table of Contents
目錄 i
圖表索引 ii
第一章 緒論 1
1.1 簡介與研究動機 1
1.2 論文大綱 1
第二章 FDTD演算法 3
2.1 從馬克斯威爾方程式到FDTD演算法 3
2.1.1 三維方程式 3
2.1.2 中央差分與Yee演算法 3
2.2 數值穩定 7
2.3 介質處理 7
2.4 波源條件 7
2.5 吸收邊界條件 8
2.5.1 Mur吸收邊界 8
2.5.2 完美匹配層吸收邊界 8
2.6 近場與遠場轉換 10
2.7 集總元件 11
2.7.1 FDTD演算法延伸至電路元件 11
2.7.2 電阻 12
2.7.3 阻抗性電壓源 12
2.7.4 電容 13
2.8 電腦演算法與FDTD方法 13
2.8.1 前置過程 13
2.8.2 進行時間步階 13
2.8.3 紀錄場值 13
第三章 切割電源平面對接地彈跳雜訊的效應 15
3.1 接地彈跳雜訊效應 15
3.2 電源平面切割結構 15
3.3 模擬與量測方法 16
3.3.1 模擬方法 16
3.3.2 電磁輻射量測環境及方法 17
3.4 切割電源平面對電源品質的影響 18
3.5 模態電流 20
3.6 切割電源平面對電磁干擾影響 21
3.7 電容防治探討 22

第四章 四層板中接地彈跳雜訊對連通柱(Via)結構之訊號品質效應 25
4.1 四層板中連通柱結構及效應 25
4.2 以細線演算法分析連通柱結構 26
4.3四層板連通柱結構說明 27
4.3.1 測試結構一:連通柱不連續結構 27
4.3.2 測試結構二:連通柱結構對於接地彈跳雜訊耦合效應 28
4.4 頻域及時域之訊號品質模擬與量測方法 29
4.5 結果與討論 30
4.5.1連通柱不連續結構 30
4.5.2連通柱結構對於接地彈跳雜訊耦合效應 32
第五章 FDTD模擬主動元件 38
5.1高頻主動元件訊號品質與電磁輻射 38
5.2 理論分析 38
5.2.1 等效電流源法 38
5.2.2 等效電壓源法 39
5.3模擬主動元件 41
5.3.1雙載子電晶體(BJT) 41
5.3.2 雙載子電晶體模擬結果 42
5.3.3 場效電晶體(FET) 43
5.3.4 互補式場效電晶體反向器(CMOS Inverter) 45
5.4 CMOS元件接地彈跳雜訊模擬 48
第六章 結論 50
參考文獻 51
參考文獻 References
[1] J. G. Yook, V. Chandramouli, L. P. B. Katehi, K. A. Sakallah, T. R. Arabi, and T. A. Schreyer, “Computation of switching noise in printed circuit boards,” IEEE Trans. Comp., Packag., and Manufact., vol. 20, pp. 64-75, Mar. 1997.
[2] G. T. Lei, R. W. Techentin, and B. K. Gilbert, “High-frequency characterization of power/ground-plane structures,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 562-569, May. 1999.
[3] S. Van den Berghe, F. Olyslager, D. De Zutter, J. De Moerloose and W. Temmerman, “Study of the ground bounce caused by power plane resonances,” IEEE Trans. Electromagn. Compat., vol. 40, No. 2, May 1998.
[4] W. Cui, X. Ye, B. Archambeault, D. White, M. Li, and J. L. Drewniak, “EMI Resulting from Signal Via Transitions through the DC Power Bus,” in Proc. of IEEE Int. Symp. on EMC, 2000, pp. 821-825.
[5] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. on Ant. and Propag., vol. 14, pp. 302-307,May 1966.
[6] A. Taflove, “Computational Electromagnetic the Finite-Difference Time-Doamin Method,” Artech House, 1995.
[7] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equation,” IEEE Trans. Electromagn. Compat., vol.23, 1981,pp. 377-382
[8] J.-P. Berenger, “A perfectly matched layer for free-space simulation in finite- difference computer codes,” submitted to Annales Telecommunications,1994.
[9] O. M. Ramahi, “Near- and Far-Field calculations in FDTD simulations using Kirchhoff surface integral representation,” IEEE Trans. on Ant. and Propag., vol. 45, No. 5, pp. 753-759, May 1997.
[10] M. Poket-May, A. Taflove, and J. Baron, “FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads,” IEEE Trans. on Microwave Theory and Techniques, vol. 42, no.8, pp.1514-1523, August 1994.
[11] J. Fan, Y. Ren, J. Chen, D. M. Hockanson, H. Shi, J. L. Drewniak, T. H. Hubing, T. P. V. Doren, and E. DuBroff, “RF isolation using power islands in dc power bus design”, Proceedings of the IEEE International Symposium on EMC., pp. 838-843, 1999.
[12] J. N. Hwang, and T. L. Wu, “The Bridging Effect of the Isolation Moat on the EMI Caused by Ground Bounce Noise between Power/Ground planes of PCB,” in Proc. of IEEE Int. Symp. on EMC, 2001, vol.1 pp. 471-474.


[13] Y. H. Lin, and T. L. Wu, “Investigation of signal quality and radiated emission of microstrip line on imperfect ground plane: FDTD analysis and measurement,” in Proc. of IEEE Int. Symp. on EMC, 2001, vol.1 pp. 319-324.
[14] M. Clennet, and L. Shafai, “ Multiple resonances and polarization of U-slot patch antenna,” Electron. Lett. vol. 35, No. 2, Jan 1999, pp. 101-103.
[15] F. Y. Yuan, “Analysis of power/ground noises and decoupling capacitors in printed circuit board systems,” Proceedings of the IEEE International Symposium on EMC., pp. 425-430, 1997.
[16] F. Gisin, Z. Pantic-Tanner, “Edge emissions from a PC board structure,” in Proc. of IEEE Int. Symp. on EMC, 2001, pp. 1333-1334.
[17] C.-N. Kuo, B. Houshmand, and T. Itoh, “FDTD analysis of active circuits with equivalent current source approach,” Antennas and Propagation Society International Symposium, AP-S. Digest, vo1.3 pp. 1510-1513, 1995.
[18] C.-N. Kuo, R.-B. Wu, B. Houshmand, and T. Itoh, “Modeling of microwave active devices using the FDTD analysis based on the voltage-source approach,” IEEE Microwave and Guided Wave Letters, vol. 6, May 1996.
[19] C.-N. Kuo, B. Houshmand, and T. Itoh, “Full-wave analysis of packaged microwave circuits with active and nonlinear devices: An FDTD approach,” IEEE Trans. Microwave Theory and Techniques, vol. 45, 1997, pp. 819-826.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code