Responsive image
博碩士論文 etd-0620105-153300 詳細資訊
Title page for etd-0620105-153300
論文名稱
Title
以蓄熱石材觸媒氧化VOCs之研究
The Study of Catalytic Oxidation of VOCs in an Air Stream over Regenerative – Thermal Stone Catalyst
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
151
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-01
繳交日期
Date of Submission
2005-06-20
關鍵字
Keywords
蓄熱石材、異丙醇、銅鈷觸媒
isopropyl alcohol, characteristics of stone, catalytic oxidation
統計
Statistics
本論文已被瀏覽 5631 次,被下載 3420
The thesis/dissertation has been browsed 5631 times, has been downloaded 3420 times.
中文摘要
由於礫石兼具有高蓄熱與廉價的特性,本研究以蓄熱式石材作為載體,以銅、錳、鈷活性金屬,分別製作不同金屬配比與不同金屬負載量之金屬觸媒,來處理揮發性有機氣體之異丙醇。並從觸媒焚化處理之轉化效率來探討出最佳之觸媒,並深入探討各種操作參數對於該觸媒之活性表現,以及長時間衰敗測試對於觸媒活性變化之觀察,並找出描述異丙醇觸媒氧化之反應動力模式。

觸媒篩選呈現結果為金屬配比10 %與金屬配比6:4之銅鈷觸媒表現最佳,在異丙醇進流濃度1500 ppm、空間流速13500 hr-1、焚化溫度350 ℃時轉化率可達95 %,乃自製觸媒21組裡處理效率最佳的觸媒,並選擇此組觸媒進行操作參數之實驗。

操作參數實驗結果呈現為焚化溫度、進流氧氣濃度、進流異丙醇濃度升高,則轉化率也相對提高;反之空間流速之增大,則轉化率則相對降低;另外在長時間之衰敗測試下其仍具有較佳的穩定性,並輔助以掃描式電子顯微鏡(SEM)、表面元素分析(EDS)、元素分析儀(EA)、X-ray觀察其衰敗前後之變化情形,由觀察結果顯示出長期衰敗測試無明顯之觸媒破損之現象以及積碳之情形發生。

觸媒反應動力模式中Power-rate Law模式較為適用,觸媒焚化反應回歸結果為近一階反應。
Abstract
In general, the characteristics of stone are two: high regenerative thermal activity and low cost. In this study, isopropyl alcohol (IPA) was oxidized by metallic catalysts with stones as carriers. To discover the best removal efficiency of isopropyl alcohol, different catalysts with different ratios of metal (these metals were copper, manganese, and cobalt) and different loading (loading meant the ratio of the weight of metal to the weight of stone) were made. Moreover, others parameters such as different inlet concentration of IPA, inlet concentration of oxygen, space velocity, reaction temperature, and long-term test were also discussed. Finally, two kinetic models were introduced to prove the catalytic oxidation mechanism of IPA.

The experimental results showed that the most effective catalyst is copper-cobalt catalyst, which ratio of metals is 6: 4 and loading is 10%. With this kind of catalyst, the optimal operational parameters could be easily found, and they were as follows: the inlet concentration of IPA was 1500 ppm, space velocity was 13500 hr-1, and reaction temperature was 350℃. It was noticed that the conversion of IPA was all up to 95% in these conditions.

In conclusion, the experimental results also indicated that conversion was increased with reaction temperature, inlet concentration of IPA and inlet concentration of oxygen increasing. On the contrary, the conversion was decreased as space velocity was increased. Besides, after long-term test of catalyst, the results showed that the performance of the catalyst acted still fairly well in oxidation. To realize the physical properties of catalysts, some analytic instruments such as SEM, EDS, EA, XRD were used. These analytic results could also tell us the difference between fresh and aged catalysts.

Two kinetic models, Power rate law Model and Mars-Van Krevelen Model, were used to fit the kinetic mechanism of the decomposition of IPA. The fitting result was that Power rate law Model was rather suitable to describe the catalytic decomposition of IPA in the operational conditions in this work, and the reaction order was nearly first order.
目次 Table of Contents
中文摘要..............................................................................................................I
英文摘要.............................................................................................................Ⅱ
目錄....................................................................................................................Ⅲ
表目錄................................................................................................................Ⅶ
圖目錄................................................................................................................Ⅸ

第一章 緒論...................................................................................................1
1-1 前言..........................................................................................................1
1-2 研究目的..................................................................................................2
1-3 研究內容..................................................................................................3

第二章 文獻回顧............................................................................................5
2-1 VOCs之簡介............................................................................................5
2-1-1 異丙醇之介紹................................................................................7
2-2 VOCs之控制技術介紹............................................................................9
2-3 金屬觸媒之特性.....................................................................................13
2-4 影響VOCs觸媒焚化效能之操作參數.................................................16
2-4-1 VOCs的種類與濃度.................................................................16
2-4-2 焚化溫度....................................................................................18
2-4-3 空間速度......................................................................................20
2-4-4 氧氣濃度....................................................................................22
2-4-5 載體之特性與選擇....................................................................23
2-4-6 觸媒種類與負載量比................................................................25
2-4-7 觸媒活性的衰退........................................................................26
2-5 觸媒焚化理論與動力式探討...............................................................28
2-5-1 觸媒焚化VOC之反應機制.......................................................28
2-5-2 反應動力式的探討....................................................................30

第三章 研究方法與實驗設備.......................................................................39
3-1 研究方法................................................................................................39
3-1-1 實驗規劃....................................................................................48
3-1-2 實驗步驟與方法........................................................................49
3-1-3 檢量線製作..................................................................................50
3-1-4 載體物性測試..............................................................................52
3-2 觸媒的製備.............................................................................................54
3-3 實驗設備與藥品.....................................................................................55
3-3-1 實驗系統裝置............................................................................55
3-3-2 試藥與氣體................................................................................59
3-3-3 主要儀器與條件........................................................................59

第四章 結果與討論.......................................................................................65
4-1 觸媒活性篩選..........................................................................................65
4-1-1 3%、5%、10%負載量的純銅觸媒比較..................................66
4-1-2 3%、5%、10%金屬負載量的銅錳觸媒比較..........................72
4-1-3 3%、5%、10%負載量的銅鈷觸媒比較..................................77
4-1-4 銅鈷觸媒、銅錳觸媒之比較....................................................82
4-2 觸媒製作成本之推估.............................................................................92
4-3 觸媒焚化異丙醇操作參數探討.............................................................93
4-3-1 觸媒焚化產物測試...................................................................94
4-3-2 空白測試...................................................................................96
4-3-3 進流濃度之效應.......................................................................98
4-3-4 空間流速之效應.....................................................................100
4-3-5 進流氧氣含量之效應.............................................................102
4-4 觸媒長期活性衰退的探討..................................................................104
4-4-1 觸媒衰退現象.........................................................................104
4-4-2 掃描式電子顯微鏡分析(SEM) .............................................106
4-4-3 表面分析(EDS) ......................................................................108
4-4-4 元素分析(EA) ........................................................................111
4-4-5 BET比表面積分析................................................................113
4-5 操作參數對反應速率之影響..............................................................113
4-5-1 Power-rate law.........................................................................114
4-5-2 Mars-Van Krevenlene Model...................................................119
4-6 操作參數對反應速率之影響..............................................................123
4-6-1 進流濃度對反應速率之效應.................................................123
4-6-2 不同反應溫度對反應速率之影響.........................................125
4-6-3 氧濃度對反應速率之影響.....................................................127
第五章 結論與建議......................................................................................130
5-1 結論.......................................................................................................130
5-2 建議.......................................................................................................132

參考文獻........................................................................................................133
參考文獻 References
1. 財團法人中技社,「固定污染源揮發性有機空氣污染物管制策略
規劃與減量措施推動計畫」,第二次期中報告,民國九十二年。
2. Radian Corp,“Control techniques for volatile organic emission from stationary source”, USEPA, EPA-450/2-78-022, 1978.
3.賴慶智,化工所八十八年度技術論壇,www.epa.gov.tw/F/文宣/固定污染源/ 工廠輔導成果/page3 /life4.html
4.Don, J. A. and Feenstra L., “ Odour abatement through biofitration ”,
In Proceedings of Symposium on Characterization and Control of
Odoriferous Pollutants in Process Industrirs : Lonvain-La Neuve
(Belgium), 1984.
5. Devinny J. S., Deshusses M. A., Webster T. S.,“Biofiltration for air pollution control”, Lewis Publishers, 1998.
6.鄭福田,「空氣污染防治(九)-臭味問題」,工業污染防治,第3卷,第1期,第59-64頁,民國八十三年。
7.劉國棟,「VOC管制趨勢展望」,工業污染防治,第10卷,第48期,第15-31頁,民國九十三年。
8.朱小容,陳郁文,「工業廢氣特殊處理技術」,化工資訊,第68-78頁,民國九十二年。
9.盧裕倉,「以觸媒氧化法處理含揮發性有機物煙道氣之研究」,國立中山大學環境工程研究所碩士論文,民國八十九年。
10.Ramanathan, K.; Spivey, J.J. Combust. Catalytic oxidation of 1,1-dichloroethane. Science and Technology. Vol.63, p.247 ,1989.
11.Prashant S. Chintawar , Howard L. Greene ,”Decomposition
Characteristics of chlorinated ethylenes on metal loaded zeolite Y and
γ-Al2O3 ” Applied Catalysis B:Environment,Vol.13, p.81-92, 1997.
12.Yan Liu, Zhaobin Wei, Zhaochi Feng ,”Oxidative Destruction of
Chlorobenzene and o-Dichlorobenzene on a high active catalyst :
MnOx/TiO2-Al2O3 ”, Journal of Catalysis ,Vol.202 , p.200-204 ,2001.
13.Iwamoto,M;Yokoo,S;Sakai,K;Kagawa,S.,Journal of Chemical and Society.,Faraday Trans. 177,1629,1981.
14.Kagawa,S.,Ogawa,H.,Furukawa,H.,Teraoko,Y. Chemistry Letters. p.407 , 1991.
15. M. Iwamoto and H. Hamada , Catalysis Today , Vol.10 , p.57 , 1991.
16.張慶璋,「溫度效應對一氧化氮在銅/碳煙觸媒上還原反應行為
之探討」, 國立中山大學化學研究所碩士論文,民國八十八年。
17.林建宏,「銅觸媒活性中心之研究」, 國立中山大學化學研究
所碩士論文,民國八十四年。
18.李偉勝,「模場與實場蓄熱式焚化爐處理排氣中揮發性有機物質之操作性能研究」,國立中山大學環境工程研究所碩士論文,民國八十九年。
19.行政院環境保護署,「危害性化學物質安全手冊」,民國八十三年。
20. Tichenor, B. A. and Palazzolo, M. A., “Destruction of volatile
organic compound via catalytic incineration ” , Environmental
Progress, Vol.6,No3, p.172-176, 1987.
21.Michael D. Amiridis , Tiejun Zhang , Robert J. Farrauto , Appl.
Catalysis.B: Environmental , Vol 10 ,p.203 , 1996.
22. Prashant S. Chintawar , Howard L. Greene ,”Decomposition
characteristics of chlorinated ethylenes on metal loaded zeolite Y and
γ-Al2O3 ” Applied Catalysis B:Environment,Vol.13, p.81-92, 1997.

23. Anderson, R.B., Stein K.C., Feenan J.J. and Hofer L.J.E. “Industrial
Engineering Chemical Research.”, 53, 809, 1961.
24.Robert, J. F., et al,“Environmental Catalysts”, Chemical Engineering, September Vol .7,p.34-44, 1992.
25.James J. Spivey, “Complete Catalytic Oxidation of Volatile Organics”,
Industrial Engineering Chemical Research, Vol.26, No.11,p2165 -
2180, 1987.
26.Heck,R. M.,and R. J. Farrauto, “Catalytic Air pollution Control”, Van Nostrand Reinhold, New York, 1995.
27.Never, N. D.“Air Pollution Control Engineering”, McGraw-Hill,
International Ed., 1995.
28. Tichenor, B. A. and Palazzolo, M.A., “Destruction of Volatile Organics componnds via Catalytic Incineration”, Environment Progress, Vol6,No3,p.172-176, 1987.
29.陳郁文,「揮發性有機物之觸媒焚化」,致中國石油公司煉製研究所報告,民國七十七年。
30. PopeD., Walker D.S. and Moss R.L., “Evaluation of Cobalt Oxide
Catalysts for the Oxidation of Low Concentration of Organic
Compounds”, Atmospheric Environment, Vol.10, No6, p.951-956,
1976.
31.林鱗易,洪彰懋,樓基中,「以Pd 觸媒處理排氣中1,3-丁二烯之研究」,第十六屆空氣污染技術研討會論文集,第196-200 頁,民國八十八年。
32.朱信,柯子星,曾庭科 「以Pt/α-Al2O3 觸媒焚化處理甲基異丁基酮之研究」, 第十六屆空氣污染控制技術研討會論文集, 第189-195頁,民國八十八年 。


33.James J. Spivey, “Complete Catalytic Oxidation of Volatile Organics”,
Industrial Engineering Chemical Research, Vol.26, No.11,
pp.2165-2180, 1987.
34.王大中、顧洋、李嘉平,「一甲胺氣體氧化反應之研究」,第七屆空氣污染控制技術研討會,第595-614頁,民國八十九年 。
35.周明顯,黃柏仁,鄭文熙,「以蓄熱式觸媒焚化設施處理排氣中揮發性有機物質之理論解析與驗證」,第十五屆空氣污染控制技術研討會論文集,第455-462頁,民國八十七年。
36.Perry, R. H. and Green D., “Perry’s chemical engineers’ handbook, 6thEd.”, McGraw-Hill International Ed., Section 26, 1984.
37.黃柏仁,「以蓄熱式觸媒焚化設施處理排氣中揮發性有機物質之
理論解析與驗證」,國立中山大學環境工程研究所碩士論文,民
八十七年。
38. F. Boccuzzi, A. Chiorino, M. Gargano, and N. Ravasio,“Preparation
, Characterization, and Activity of Cu/TiO2 Catalysts“,Journal of catalysis, Vol.165, p.140-149, 1997.
39. Ken-ichi Shimizu, Hajime Maeshima, Atsushi Satsuma, Tadashi
Hattori, “Transition metal-aluminate catalysts for NO reduction by
C3H6”, Applied Catalysis B:Environmental, Vol.18, p.163-170,
1998.
40.Zhenping Zhu, Zhenyu Liu, Shoujun Liu, Hongxian Niu, Tiandon
Hu, “NO reduction with NH3 over an activated carbon-supported
copper oxide catalysts at low temperatures”, Applied Catalysis
B:Environmental, Vol.26, p.25-35, 2000.
41.李慧梅,「都市地區空氣中多環芳香族碳氫化合物之研究」,NSC-79-0421-E-002-37Z“ Partitioning of Polycyclic Aromatic Hydrocarbonsbetween Gasous and Particulate Phases in Urban Atmosphere”,1990.
42.王清輝,「銅-鉬氧化物擔體觸媒應用於氧化分解二硫化二甲基之研究」,國立成功大學化工學系碩士論文,民國八十七年。
43.Weihulst Hua Zi Gao, “Catalytic Combustion of n-pentane on Pt Supported on Soild Superacids”,Applied Catalysis B: Environmental , Vol.17, pp.37~42, 1998.
44.鄭乙任,「影響觸媒焚化的主要因素及操作維護注意事項之探討」,工業污染防治報導,第132期,第8-9頁,民國八十九。
45.Prasad R.,kennedyL.A.,RuckensteinE. “Catalytic Combustion”
Catal.Rev. Science and Engineering.,Vol.26,No.1,p.1-58,1984.
46. Heyes, C.J., Irwin, J.G., Johnson, H.A. and Moss, R.L., “The Catalytic
Oxidation of Organic Air Pollutants. Part I . Single Metal Oxide
Catalysts”, Journal of Chemical and Biotechnology Vol.32, p.1025
-1033, 1982.
47.呂立德,「化工動力與化工熱力」,立功出版社,民國九十年。
48.黃柳青譯,「化工動力學與反應設計下冊」,科技出版社,
49. Gangwal, S.K., Mullins, M.E. Spivey, j.j. and Caffrey, P.R., “Kinetics
and Selectivity of Deep Catalytic Oxidation of n-Hexane and
Benzene”, Applied Catalysis, Vol.36, pp.231-247, 1988.
50.Chang, C. and Weng, H., “Deep Oxidation of Toluene on Perovskite
Catalysts”, Industrial Engineering Chemical Research., Vol.32,
pp.2930-2933, 1993.
51.Gennkoplis, C. J.,“Transport Process and Unit Operation”, Third
Edition, Prentice-Hall International Ed., U.S.A., 1995.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code