URN 
etd0620106132718 
Author 
Huimin Yang 
Author's Email Address 
No Public. 
Statistics 
This thesis had been viewed 5128 times. Download 1238 times. 
Department 
Applied Mathematics 
Year 
2005 
Semester 
2 
Degree 
Master 
Type of Document 

Language 
English 
Title 
Fourier analysis on spaces generated by s.n function 
Date of Defense 
20060616 
Page Count 
26 
Keyword 
Fourier analysis
symmetric norming function
Besov spaces

Abstract 
The Besov class $B_{pq}^s$ is defined by ${ f : { 2^{ns}W_n*f_p } _{ninmathbb{Z}}in ell^q(mathbb{Z}) }$. When $s=1$, $p=q $, we know if $f in B_p$ if and only if $int_mathbb{D} f^{(n)}(z)^p(1z^2)^{2pn2}dv(z) <+infty$. It is shown in [5] that $int_{mathbb{D}}f^{'}(z)^q K(z,z)^{1q}dv(z)= O(L(b(e^{(qp)^{1}})))$ if $f in B_{L,p}$. In this paper we will show that $f in B_{L,p}$ if and only if $sum_{n=0}^{infty}2^{nq}W_n*f_p^q = O(L(b(e^{(qp)^{1}})))$. 
Advisory Committee 
NgaiChing Wong  chair
none  cochair
none  cochair
Mark C. Ho  advisor

Files 
indicate accessible in a year 
Date of Submission 
20060620 