Title page for etd-0620106-132718


[Back to Results | New Search]

URN etd-0620106-132718
Author Hui-min Yang
Author's Email Address No Public.
Statistics This thesis had been viewed 5064 times. Download 1213 times.
Department Applied Mathematics
Year 2005
Semester 2
Degree Master
Type of Document
Language English
Title Fourier analysis on spaces generated by s.n function
Date of Defense 2006-06-16
Page Count 26
Keyword
  • Fourier analysis
  • symmetric norming function
  • Besov spaces
  • Abstract The Besov class $B_{pq}^s$ is defined by ${ f : {
    2^{|n|s}||W_n*f||_p
    } _{ninmathbb{Z}}in ell^q(mathbb{Z}) }$. When $s=1$, $p=q
    $, we know if $f in B_p$ if and only if
    $int_mathbb{D}
    |f^{(n)}(z)|^p(1-|z|^2)^{2pn-2}dv(z) <+infty$. It is shown in [5]
    that $int_{mathbb{D}}|f^{'}(z)|^q K(z,z)^{1-q}dv(z)=
    O(L(b(e^{-(q-p)^{-1}})))$ if $f in B_{L,p}$. In this paper we
    will show that $f
    in B_{L,p}$ if and only if
    $sum_{n=0}^{infty}2^{nq}||W_n*f||_p^q =
    O(L(b(e^{-(q-p)^{-1}})))$.
    Advisory Committee
  • Ngai-Ching Wong - chair
  • none - co-chair
  • none - co-chair
  • Mark C. Ho - advisor
  • Files
  • etd-0620106-132718.pdf
  • indicate accessible in a year
    Date of Submission 2006-06-20

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have more questions or technical problems, please contact eThesys