Responsive image
博碩士論文 etd-0620106-143230 詳細資訊
Title page for etd-0620106-143230
論文名稱
Title
使用低溫共燒陶瓷碎形濾波器之設計與實作
Design and Fabrication of Fractal Filters by Using LTCC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-12
繳交日期
Date of Submission
2006-06-20
關鍵字
Keywords
碎形、低溫共燒陶瓷
Fractal, Low-Temperature Cofired Ceramic (LTCC)
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
在本文中,我們提出由碎形曲線來設計具有兩個傳輸零點的新型帶通濾波
器。藉由碎形理論幫助,可以有效地降低帶通濾波器的尺寸,而所設計的帶通濾
波器可以很容易地使用具有多層結構特性的低溫共燒陶瓷製程實作出來。在相同
介質厚度與耦合係數的條件下,我們與一般常見的方形開迴路帶通濾波器比較,
其結果證明了碎形曲線的確具有縮小化的能力,以中心頻率為2.4GHz 為例,Koch
一階曲線、Minkowski 一階曲線與Minkowski 二階曲線分別可達到36.5%、32%
與51.5%的縮小化目標。最後,模擬與量測的結果均在文中列出。
Abstract
In this thesis we propose several novel configurations of bandpass filters (BPFs)
with two transmission zeros by using the fractal theory. By means of the fractal
theory, the dimension of the proposed BPFs can be effectively reduced. Furthermore,
the proposed BPFs can be easily fabricated by using multilayer structure based on
low-temperature cofired ceramic (LTCC) technology. Under the condition of the
same dielectric thickness and coupling coefficient, we compared the conventional
square open-loop BPF with the proposed fractal ones. The results show that the
reduction in the dimension of the proposed BPFs is evident. Specifically, the
dimension of the proposed Koch’s, Minkowski_1st, and Minkowski_2nd filters can be
reduced by about 36.5%, 32%, and 51.5%, respectively. Finally, the simulation and
measurement results are reported in this thesis.
目次 Table of Contents
致謝....................................................... I
摘要(中文)................................................ III
摘要(英文)................................................ IV
目錄...................................................... V
圖表目錄................................................. VII
第一章 序論 ................................................ 1
1.1 研究背景與動機...................................... 1
1.2 研究目的與方法...................................... 2
第二章 碎形理論............................................ 4
2.1 碎形的緣起.......................................... 4
2.2 碎形維度............................................ 5
2.3 碎形結構在微波上的應用............................. 10
第三章 LTCC 之技術應用.................................... 16
3.1 簡介............................................... 16
3.2 LTCC 之優缺點...................................... 17
3.3 製程技術........................................... 20
3.4 LTCC 元件之設計流程................................ 25
第四章 碎形濾波器之設計原理............................... 29
V
4.1 濾波器的等效電路與耦合原理......................... 29
4.2 使用碎形理論縮小化並應用於IEEE 802.11a 濾波器之設計與
模擬.............................................. 38
4.3 傳輸零點頻率與饋入線位置的探討..................... 53
4.4 使用碎形理論縮小化並應用於IEEE 802.11b、g 濾波器之設計
與模擬............................................ 59
第五章 實作與量測方法...................................... 69
5.1 TRL 校正法......................................... 69
5.2 碎形濾波器之實作與量測............................. 73
5.3 接地效應的探討..................................... 83
第六章 結論............................................... 86
參考文獻.................................................. 87
參考文獻 References
[1] R. V. Pucha, S. Hegde, M. Damani, K. Tunga, A. Perkins, S. Mahalingam, G.
Ramakrishna, G. C. Lo, K. Klein, J. Ahmad, and S. K. Sitaraman, “System-level
reliability assessment of mixed-signal convergent Microsystems,” IEEE Trans. Adv.
Packag., vol. 27, no. 2, pp. 438-452, May, 2004.
[2] T. Hirota, A. Minakawa, and M. Muraguchi, “Reduced-size branch-line and rat-race
hybrids for uniplanar MMICs,” IEEE Trans. Microwave Theory Tech., vol. 38, pp.
270–275, Mar., 1990.
[3] H. R. Ahn, I. S. Chang, and S. W. Yun, “Miniaturized 3-dB ring hybrid terminated by
arbitrary impedances,” IEEE Trans. Microwave Theory Tech., vol. 42, pp.
2216–2221, Dec., 1994.
[4] H. Tanaka, Y. Sasaki, T. Hashimoto, Y. Yagi, and Y. Ishikawa, “Miniaturized 90
degree hybrid coupler using high dielectric substrate for QPSK modulator,” in IEEE
MTT-S Int. Microwave Symp. Dig., pp. 793–796, Jun., 1996.
[5] K. W. Eccleston and S. H. M. Ong, “Compact planar microstripline branch-line and
rat-race coupler,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 2119–2125,
Oct., 2003.
[6] B. B. Mandelbrot, The Fractal Geometry of Nature, New York: W. H. Freeman and
Company, 1977.
[7] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, New
York: John Wiley & Sons, 1990.
[8] H. Lauwerier, Fractals: Endlessly Repeated Geometrical Figures, Princeton, New
Jersey: Princeton University Press, 1991.
[9] J-F Gouyet, Physics and Fractal Structures, NewYork: Springer, 1996.
[10] Yamaguti, Masaya, M. Hata, and J. Kigami, Translations of Mathematical
Monographs Volume 167: Mathematics of Fractals, Providence, Rhode Island:
American Mathematical Society, 1993.
[11] H. Sagan, Space-Filling Curves. Springer-Verlag, 1994.
[12] http://alumni.nctu.edu.tw/~sinner/complex/fractals/product/generator.htm
[13] C. Puente, “Fractal and Multifractal antennas,” Invention Patent ES 2112163.
87
[14] C. Puente, J.Romeu, R. Pous, J. Ramis, and A. Hijazo. “Small but long Koch fractal
Monopole,” Electron. Lett., vo1.34, no. 1, pp. 9-10, Jan., 1998.
[15] J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and High
Directivity Bowtie Patch Antenna based on the Sierpinski Fractal,” Microwave and
Optical Technology Letters, vo1. 31, pp. 239-241, Nov., 2001
[16] N. Cohen, “Fractal Antennas Part 1: Introduction and the Fractal Quad,”
Communication: Quarterly, Summer, pp. 7-22, 1995.
[17] N. Cohen, “Fractal Antennas Part 2: A Discussion of Relevant, but Disparate
Qualities,” Communications Quarterly, Summer, pp. 53-66.,1996.
[18] C. Puente, J. Romeu, R. Pous, and A. Cardama, ”Fractal multiband antenna based on
the Sierpinski Gasket,” Electron. Lett., vol. 32, no. 1, pp. 1-2, Jan., 1996
[19] C. Borja, G. Font, S. Blanch, and J. Romeu., ‘‘ High Directivity fractal boundary
microstrip patch antenna,” IEE Electronic Letters, vol. 36 , pp.778-779, Apr.,
2000.
[20] J. P. Gianviffwb and Yahya R.-S., “Fractal Antennas :A Novel Antenna
Miniaturization Technique ,and Applications,” IEEE Trans. on Antennas and
Propagat., vol. 44, pp. 20-36, Feb., 2002.
[21] J. Anguera, C. Puente, and J. Soler, “Miniature Monopole Antenna based on the
Fractal Hilbert Curve,” IEEE AP- S Int. Symp. Dig. vol. 4, pp. 546-549, Jun., 2002.
[22] M. Barra, C. Collado, J. Mateu, and J. O’Callaghan, “Miniaturization of
superconducting filters using Hilbert fractal curves,” IEEE Trans. on Applied
Superconductivity., vol. 15, no. 3, pp. 3841-3846, Sep., 2005.
[23] J. S. Hong, and M. J. Lancaster “Theory and experiment of novel microstrip
slow-wave open-loop resonator filters,” IEEE Trans. Microwave Theory Tech., vol.
45, no. 12, pp. 2358-2365, Dec. 1997.
[24] C. K. Wu, H. S. Wu, and C. K. Tzuang, “Electric-magnetic-electric slow-wave
microstrip line and bandpass filter of compressed size,” IEEE Trans. Microwave
Theory Tech., vol. 50, no. 8, pp. 1996-2004, Aug. 2002.
[25] P. Vincent, J. Culver, and S. Eason, “Meandered line microstrip filter with
suppression of harmonic passband response,” IEEE MTT-S Int. Microwave Symp.
88
Dig., vol. 3, pp. 1905-1908, Jun. 2003.
[26] Il Kwon Kim; N. Kingsley, M. Morton, R. Bairavasubramanian, J. Papapolymerou,
M. M. Tentzeris, and J. G. Yook, “Fractal-shaped microstrip coupled-line bandpass
filters for suppression of second harmonic,” IEEE Trans. Microwave Theory Tech.,
vol. 53, pp. 2943-2948, Sep. 2005.
[27] C.-W. Tang, “Harmonics-suppression LTCC filter with the step-impedance
quarter-wavelength open stub,” IEEE Trans. Microwave Theory Tech., vol. 52, pp.
617–624, Feb. 2004.
[28] http://www.ansoft.com/EMpower/LGinnotek.pdf
[29] C.Q. Scrantom and J.C. Lawson, “LTCC technology : Where we are and where
we’re going –Ⅱ,” IEEE MTT-S Int. Microwave Symp. Dig., pp.193-200, Feb.
1999.
[30] http://www.f-tek.com.tw/english/download/LTCC-design.pdf
[31] http://www2.dupont.com/MCM/en_US/PDF/designguides/LTCC-20Design-20G
uide.pdf
[32] C.-K. C. Tzuang, Y.-C. Chiang, and S. Su, “Design of a quasiplanar broadside
end-coupled bandpass filter,” IEEE MTT-S IMS Dig., pp. 407-410, May 1990.
[33] B.G. Choi, M.G. Stubbs, and C.S. Park, “A Ka-band narrow bandpass filter using
LTCC technology,” IEEE Microwave and Wireless components lett., vol. 13, pp.388
-389, Sep. 2003.
[34] Ansoft HFSS Engineering Note, Ansoft Corporation.
[35] Sonnet User’s Guide, Sonnet Software, Inc.
[36] J. S. Hong, “Couplings of asynchronously tuned coupled microwave resonators,”
IEE Proc.-Microw. Antennas Propag. Vol. 147., No. 5, pp. 354-358, October 2000.
[37] K. Chang, Microwave Ring Circuits and Antennas. New York: Wiley, 1996, ch. 6.
[38] J. S. Hong, and M. J. Lancaster, Microwave Filters for RF/Microwave Applications.
New York: Wiley, 2001, ch. 8.
[39] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters,
Impedance-Matching Networks, and Coupling Structures. New York: McGraw-Hill,
1980, ch. 11.
89
[40] L.H. Hsieh and K. Chang, “Tunable microstrip bandpass filters with two
transmission zeros,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 12, pp.
520-525, Feb. 2003.
[41] 陳棓煌,“向量網路分析儀量測校正方法之研究與實踐,”中山大學碩士論文,
1996.
[42] G.F. Engen and C.A. Hoer, “ Thru-Reflect-Line: An Improved Technique for
Calibrating the Dual Six-Port Automatic Network Analyzer,” IEEE Transactions on
Microwave Theory and Techniques, vol. 27, No. 12, pp. 987-993, Dec. 1979.
[43] Hewlett Packard, In-fixture microstrip device measurements using TRL calibration,
HP Product Note 8720-2, 1991.
[44] S. Amari, G. Tadeson, J. Cihlar and U.Rosenberg, “New parallel λ/2-microstrip line
filters with transmission zeros at finite frequencies,” in IEEE MTT-S Int. Microwave
Symp. Dig., 2003, pp. 543-546.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.218.230
論文開放下載的時間是 校外不公開

Your IP address is 3.137.218.230
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code