Responsive image
博碩士論文 etd-0620113-022129 詳細資訊
Title page for etd-0620113-022129
論文名稱
Title
白藜蘆醇對人類口腔癌細胞鈣離子濃度和凋亡的影響
Effect of resveratrol on [Ca2+]i rises and apoptosis in human oral cancer cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
47
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-21
繳交日期
Date of Submission
2013-07-22
關鍵字
Keywords
人類口腔癌細胞、白藜蘆醇、鈣離子、細胞凋亡
resveratrol, human oral cancer cells, apoptosis, Ca2+
統計
Statistics
本論文已被瀏覽 5727 次,被下載 1458
The thesis/dissertation has been browsed 5727 times, has been downloaded 1458 times.
中文摘要
本研究探討天然產物白藜蘆醇(resveratrol)對人類口腔癌細胞株(human oral cancer cells, OC2)細胞內鈣離子濃度和細胞存活率的影響。本研究利用鈣離子螢光染劑fura-2來偵測胞內鈣離子濃度,人類口腔癌細胞株OC2加入濃度5-20 μM之resveratrol後,其鈣離子的濃度的變化隨resveratrol的濃度增加而上升。當移去細胞外培養液中的鈣離子後,鈣離子的訊號則部分下降。由resveratrol誘發細胞外之鈣離子信號內流,受nifiedipine和蛋白質激酶(protein kinase C, PKC)抑制劑(GF109203X)抑制所影響。當去除細胞外鈣離子,培養在不含鈣離子的細胞培養液中,細胞加入2,5-di-tert-butylhydroquinone (BHQ) (一種內質網上鈣離子幫浦抑制劑)完全抑制resveratrol誘導鈣離子濃度的上升。反之,加入了resveratrol的細胞培養液中,抑制大部分BHQ誘導的鈣離子濃度上升。磷脂酶C (phospholipase C, PLC)抑制劑(U73122)抑制大部分resveratrol誘導的鈣離子濃度上升。Resveratrol在濃度20-100 μM下,以濃度所依賴的方式造成細胞毒殺性死亡。在細胞液中加入BAPTA/ AM (鈣離子螯合劑),這種細胞毒殺作用並沒有改變。Annexin V/Propidium (PI) (偵測細胞凋亡的螢光染劑)的染色數據表示,resveratrol在濃度20 μM和40 μM誘導細胞凋亡。另一方面,在濃度20 μM和40 μM的resveratrol處理下也引起細胞週期的阻滯。總之,在人類口腔癌細胞株中加入resveratrol後誘導鈣離子濃度上升,是藉由內質網釋放之磷脂酶C依賴路徑,且鈣離子經由蛋白質激酶C和nifidepine影響的鈣離子通道進入而上升。Resveratrol誘導細胞死亡可能涉及細胞凋亡。
Abstract
This study examined whether the natural product resveratrol altered cytosolic Ca2+ concentration ([Ca2+]i) and viability in OC2 human oral cancer cells. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Resveratrol at concentrations of 5-20 μM induced a [Ca2+]i rise in a concentration-dependent fashion. The response was decreased partially by removal of extracellular Ca2+. Resveratrol-induced Ca2+ signal was inhibited by nifedipine and protein kinase C (PKC) inhibitor GF109203X. When extracellular Ca2+ was removed, incubation with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) abolished resveratrol-induced [Ca2+]i rise. Conversely, incubation with resveratrol largely inhibited BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C (PLC) with U73122 largely inhibited resveratrol-induced [Ca2+]i rise. At concentrations of 20-100 μM, resveratrol caused cytotoxicity in a concentration-dependent manner. This cytotoxic effect was not changed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxy methyl (BAPTA/AM). Annexin V/propidium iodide (PI) staining data suggest that resveratrol between 20 μM and 40 μM induced apoptosis. At concentrations of 20 μM and 40 μM, resveratrol also caused cell cycle arrest. Collectively, in human oral cancer cells, resveratrol induced a [Ca2+]i rise by inducing PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive, nifidepine-sensitive Ca2+ channels. Resveratrol induced cell death that might involve apoptosis.
目次 Table of Contents
目 錄
論文審定書...............................................................................................................i
誌謝..........................................................................................................................ii
中文摘要...................................................................................................................iii
英文摘要...................................................................................................................iv
List of abbreviations…………………………………………………………...................v
1. Introduction……………………………………………………………….....................1
1.1 Resveratrol...……………………………………………………………....................1
1.2 Ca2+ as a pivotal intracellular signal in cells………………………......................1
1.3 Apoptosis…………………………………………………………………...................3
1.4 The OC2 human squamous cell line……………………………............................5
2. Aims…………………………………………………………………….........................7
3. Materials and methods.………………………………………………….....................8
3.1 Chemicals……………………...............................................................................8
3.2 Cell culture……………………………………………………...................................8
3.3 Solutions used in [Ca2+]i measurements…………..............................................8
3.4 [Ca2+]i measurements…………………………………………………….................8
3.5 Cell viability assays……………………………………………………......................9
3.6 Alexa Flour 488 Annexin V/PI staining for detection of apoptosis..............….10
3.7 Measurements of subdiploidy nuclei by flow cytometry......................................10
3.8 Statistics……………………………………………………………………................11
4. Results……………………………………………………………………………..........12
4.1 Effect of resveratrol on [Ca2+]i…………………………………………..................12
4.2 Effect of resveratrol on Mn2+ influx…………......................................................12
4.3 Effect of resveratrol-induced Ca2+ influx pathways………………………............12
4.4 Intracellular Ca2+ store of resveratrol-induced rise [Ca2+]i…………..................13
4.5 A role of phospholipase C in resveratrol-induced rise [Ca2+]i…………..............13
4.6 Relationship between resveratrol-induce [Ca2+]i rise and cell death…..............14
4.7 The role of apoptosis in resveratrol-induced cell death…………………..............14
5. Discusion………………………………………………………………………..............16
6. Conclusion……………………………………….......................................................18
References…………………………………………………………………………............19
Figure legends………………………………………………………………………...........27
Figure. 1-1 Structure of resveratrol………………………………………………............27
Figure. 1-2 Major Ca2+ entry pathways…………………............................................28
Figure. 1-3 Apoptosis (programmed cell death)………………………………..............29
Figure. 1-4 Extrinsic and intrinsic apoptotic pathways…………………………............30
Figure. 2-1 Resveratrol induced a [Ca2+]i rise in a concentration-dependent
manner in OC2 cells……………………………………………………...........................31
Figure. 2-3 Effect of Ca2+ channel modulators on resveratrol-induced [Ca2+]i rise..33
Figure. 2-4 Intracellular Ca2+ stores of reveratrol-induced Ca2+ release...………....34
Figure. 2-5 Effect of U73122, a phospholipase C inhibitor, on resveratrol
-induced Ca2+ release…………………………............................................................35
Figure. 2-6 Resveratrol reduced cell viability in a concentration dependent
manner and BAPTA-AM loading did not affect resveratrol
-induced cytotoxicity in OC2 cells……………………………………….........................36
Figure. 2-7 Apoptosis induced by resveratrol measured by Annexin V/PI staining……………………………………………………………………..........................37
Figure. 2-8 Resveratrol between 20 μM and 40 μM caused cell cycle arrest in
OC2 cells……………………………………………………………..................................38
參考文獻 References
References
Ali R, Huang Y, Maher SE, Kim RW, Giordano FJ, Tellides G, Geirsson A. miR-1 mediated suppression of Sorcin regulates myocardial contractility through modulation of Ca2+ signaling. J Mol Cell Cardiol 2012;52:1027-37
Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006;5:493-506
Bergner A, Huber RM. Regulation of the endoplasmic reticulum Ca2+-store in cancer. Anticancer Agents Med Chem 2008;8:705-9
Berridge MJ. Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 2009;1793:933-40
Blaustein MP. Calcium transport and buffering in neurons. Trends Neurosci 1988;11:438-43
Bootman MD, Berridge MJ, Roderick HL. Calcium signalling: more messengers, more channels, more complexity. Curr Biol 2002;12:R563-5
Chi CC, Chou CT, Kuo CC, Hsieh YD, Liang WZ, Tseng LL, Su HH, Chu ST, Ho CM, Jan CR. Effect of m-3m3FBS on Ca2+ handling and viability in OC2 human oral cancer cells. Acta Physiol Hung 2012;99:74-86
Chien JM, Chou CT, Pan CC, Kuo CC, Tsai JY, Liao WC, Kuo DH, Shieh P, Ho CM, Chu ST, Su HH, Chi CC, Jan CR. The mechanism of sertraline-induced [Ca2+]i rise in human OC2 oral cancer cells. Hum Exp Toxicol 2011;30:1635-43
Chung TT, Pan MS, Kuo CL, Wong RH, Lin CW, Chen MK, Yang SF. Impact of RECK gene polymorphisms and environmental factors on oral cancer susceptibility and clinicopathologic characteristics in Taiwan. Carcinogenesis 2011;32:1063-8
Clapham DE. Intracellular calcium. Replenishing the stores. Nature 1995;375:634-5
Courjaret R, Machaca K. STIM and Orai in cellular proliferation and division. Front Biosci (Elite Ed) 2012;4:331-41
Csipo I, Montel AH, Hobbs JA, Morse PA, Brahmi Z. Effect of Fas+ and Fas- target cells on the ability of NK cells to repeatedly fragment DNA and trigger lysis via the Fas lytic pathway. Apoptosis 1998;3:105-14
Davis FM, Peters AA, Grice DM, Cabot PJ, Parat MO, Roberts-Thomson SJ, Monteith GRNon-stimulated, agonist-stimulated and store-operated Ca2+ influx in MDA-MB-468 breast cancer cells and the effect of EGF-induced EMT on calcium entry. PLoS One 2012;7:e36923
Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 2008;9:378-90
Du Q, Shen KP, Hu B, Deng S. Effects of resveratrol on apoptosis and ROS production in Hepa 1-6 hepatocarcinoma cells. Zhong Yao Cai 2012;35:443-8
Elíes J, Cuíñas A, García-Morales V, Orallo F, Campos-Toimil M. Trans-resveratrol simultaneously increases cytoplasmic Ca2+ levels and nitric oxide release in human endothelial cells. Mol Nutr Food Res 2011;55:1237-48
Fang YC, Chou CT, Pan CC, Hsieh YD, Liang WZ, Chao D, Tsai JY, Liao WC, Kuo DH, Shieh P, Kuo CC, Jan CR, Shaw CF. Proxetine-induced Ca2+ movement and death in OC2 human oral cancer cells. Chin J Physiol 2011;54:310-7
Fang Y, DeMarco VG, Nicholl MB. Resveratrol enhances radiation sensitivity in prostate cancer by inhibiting cell proliferation and promoting cell senescence and apoptosis. Cancer Sci 2012;103:1090-8
Fang JY, Li ZH, Li Q, Huang WS, Kang L, Wang JP. Resveratrol affects protein kinase C activity and promotes apoptosis in human colon carcinoma cells. Asian Pac J Cancer Prev 2012;13:6017-22
Florenzano F, Viscomi MT, Mercaldo V, Longone P, Bernardi G, Bagni C, et al. P2X2R purinergic receptor subunit mRNA and protein are expressed by all hypothalamic hypocretin/orexin neurons. J Com Neurol 2006;498:58-67
Fuchs Y, Steller H .Programmed cell death in animal development and disease. Cell 2011;147:742-58
Gong QH, Wang Q, Shi JS, Huang XN, Liu Q, Ma H. Inhibition of caspases and intracellular free Ca2+ concentrations are involved in resveratrol protection against apoptosis in rat primary neuron cultures. Acta Pharmacol Sin 2007;28:1724-30
Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985;260:3440-50
Hague A, Paraskeva C. Apoptosis and disease: a matter of cell fate. Cell Death Differ 2004;11:1366-72
Hsieh YD, Chi CC, Chou CT, Cheng JS, Kuo CC, Liang WZ, Lin KL, Tseng LL, Jan CR. Investigation of carvedilol-evoked Ca2+ movement and death in human oral cancer cells. J Recept Signal Transduct Res 2011;31:220-8
Hu1 SJ, Horng CT, Chen HI, Chang YT, Cheng CM, Liang WZ, Shieh H, Jan CR. Effect of Diethylstilbestrol (DES) on Ca2+ Homeostasis and Viability in OC2 Human Oral Cancer Cells. Adaptive Medicine 2012;4:199-208
Indran IR, Tufo G, Pervaiz S, Brenner C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta 2011;1807:735-45
Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 1996;19:1518-20
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90
Kao E, Shinohara M, Feng M, Lau MY, Ji C. Human immunodeficiency virus protease inhibitors modulate Ca2+ homeostasis and potentiate alcoholic stress and injury in mice and primary mouse and human hepatocytes. Hepatology 2012;56:594-604
Kaufmann T, Strasser A, Jost PJ. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ 2012;19:42-50
Khan MA, Chen HC, Wan XX, Tania M, Xu AH, Chen FZ, Zhang DZ. Regulatory effects of resveratrol on antioxidant enzymes: a mechanism of growth inhibition and apoptosis induction in cancer cells. Mol Cells 2013;35:219-25
Kurokawa M, Kornbluth S. Caspases and kinases in a death grip. Cell 2009;138:838-54
Lee YR, Wu WC, Ji WT, Chen JY, Cheng YP, Chiang MK, Chen HR. Reversine suppresses oral squamous cell carcinoma via cell cycle arrest and concomitantly apoptosis and autophagy. J Biomed Sci 2012;19:9
Liang WZ, Chou CT, Lu T, Chi CC, Tseng LL, Pan CC, Lin KL, Kuo CC, Jan CR. The mechanism of carvacrol-evoked [Ca2+]i rises and non-Ca2+-triggered cell death in OC2 human oral cancer cells. Toxicology 2013;303:152-61
Li G, He S, Chang L, Lu H, Zhang H, Zhang H, Chiu J.GADD45α and annexin A1 are involved in the apoptosis of HL-60 induced by resveratrol. Phytomedicine 2011 18:704-9
Li H, Wang X, Chen T, Qu J. p38 inhibitor SB203580 sensitizes the resveratrol-induced apoptosis in human lung adenocarcinoma (A549) cells. J Biochem Mol Toxicol 2012;26:251-7
Liu SI, Cheng HH, Huang CJ, Chang HC, Chen WC, Chen IS, Hsu SS, Chang HT, Huang JK, Chen JS, Lu YC, Jan CR. Melittin-induced [Ca2+]i increases and subsequent death in canine renal tubular cells. Hum Exp Toxicol 2008;27:417-24
Li Y, Song LQ, Chen MQ, Zhang YM, Li J, Feng XY, Li W, Guo W, Jia G, Wang H, Yu J. Low strength static magnetic field inhibits the proliferation, migration, and adhesion of human vascular smooth muscle cells in a restenosis model through mediating integrins β1-FAK, Ca2+ signaling pathway. Ann Biomed Eng 2012;40:2611-8
Lövborg H, Gullbo J, Larsson R. Screening for apoptosis--classical and emerging techniques. Anticancer Drugs 2005;16:593-9
Matthews GM, Newbold A, Johnstone RW. Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity. Adv Cancer Res 2012;116:165-97
Ma R, Du J, Sours S, Ding M. Store-operated Ca2+ channel in renal microcirculation and glomeruli. Exp Biol Med (Maywood) 2006;231:145-53
Ma X, Tian X, Huang X, Yan F, Qiao D. Resveratrol-induced mitochondrial dysfunction and apoptosis are associated with Ca2+ and mCICR-mediated MPT activation in HepG2 cells. Mol Cell Biochem 2007;302:99-109
Merritt JE, Jacob R, Hallam TJ. Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J Biol Chem 1989;264:1522-7
Molnar T, Barabas P, Birnbaumer L, Punzo C, Kefalov V, Križaj D. Store-operated channels regulate intracellular calcium in mammalian rods. J Physiol 2012;590:3465-81
Okamoto Y, Ohkubo T, Ikebe T, Yamazaki J. Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines. Int J Oncol 2012;40:1431-40
Osman AM, Bayoumi HM, Al-Harthi SE, Damanhouri ZA, Elshal MF. Modulation of doxorubicin cytotoxicity by resveratrol in a human breast cancer cell line. Cancer Cell Int 2012;12:47
Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 2008;27:6407-18
Pradelli LA, Bénéteau M, Ricci JE. Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci 2010;67:1589-97
Raff, M. Cell suicide for beginners. Nature 1998;396:119-22
Rong Ma1, Juan Du, Sherry Sours, Min Ding. Store-Operated Ca2+ Channel in Renal Microcirculation and Glomeruli. Exp Biol Med (Maywood) 2006;231:145-53
Richard T, Pawlus AD, Iglésias ML, Pedrot E, Waffo-Teguo P, Mérillon JM, Monti JP. Neuroprotective properties of resveratrol and derivatives. Ann N Y Acad Sci 2011;1215:103-8
Tian XM, Ma XD, Yan F. Resveratrol promotes Ca2+-induced Ca2+ release from rat liver cell mitochondria mediated by Ca2+. Nan Fang Yi Ke Da Xue Xue Bao 2006;26:910-3
Trivedy CR, Craig G, Warnakulasuriya S. The oral health consequences of chewing areca nut. Addict Biol 2002;7:115-25
Tsai JY, Shieh P, Kuo DH, Chen FA, Kuo CC, Jan CR. Effect of m-3M3FBS on Ca2+ movement in PC3 human prostate cancer cells. Chin J Physiol 2010;53:151-9
Sareen D, Darjatmoko SR, Albert DM, Polans AS. Mitochondria, calcium, and calpain are key mediators of resveratrol-induced apoptosis in breast cancer. Mol Pharmacol 2007;72:1466-75
Shideman CR, Reinardy JL, Thayer SA. gamma-Secretase activity modulates store-operated Ca2+ entry into rat sensory neurons. Neurosci Lett 2009;451:124-28
Scott E, Steward WP, Gescher AJ, Brown K. Resveratrol in human cancer chemoprevention--choosing the 'right' dose. Mol Nutr Food Res 2012;56:7-13
Stewart JR, Ward NE, Ioannides CG, O'Brian CA. Resveratrol preferentially inhibits protein kinase C-catalyzed phosphorylation of a cofactor-independent, arginine-rich protein substrate by a novel mechanism. Biochemistry 1999;38:13244-51
Sun S, Li W, Zhang H, Zha L, Xue Y, Wu X, Zou F. Requirement for store-operated calcium entry in sodium butyrate-induced apoptosis in human colon cancer cells. Biosci Rep 2012;32:83-90
Thompson AK, Mostafapour SP, Denlinger LC, Bleasdale JE, Fisher SK. The aminosteroid U-73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK-N-SH neuroblastoma cells. A role for Gp in receptor compartmentation. J Biol Chem 1991;266:23856-62
Trivedy CR, Craig G, Warnakulasuriya S.The oral health consequences of chewing areca nut. Addict Biol 2002;7:115-25
Tsien RY. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 1980;19:2396-404
Vanamala J, Reddivari L, Radhakrishnan S, Tarver C. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer 2010;10:238
Wang, JL, Lin, KL, Chen, WC, Chou, CT, Huang, CJ, Liu, CS, Hsieh CH, Chang CH, Huang JK, Chang HT, Liu SI, Hsu SS, Jan CR. Effect of celecoxib on Ca2+ fluxes and proliferation in MDCK renal tubular cells. J Recept Signal Transduct Res 2005;25:237-49
Wang Z, Li W, Meng X, Jia B. Resveratrol induces gastric cancer cell apoptosis via reactive oxygen species, but independent of sirtuin1. Clin Exp Pharmacol Physiol 2012;39:227-32
Wassenberg JJ, Clark KD, Nelson DL. Effect of SERCA pump inhibitors on chemoresponses in Paramecium. J Eukaryot Microbiol 1997;44:574-81
Wong DY, Chang KW, Chen CF, Chang RC. Characterization of two new cell lines derived from oral cavity human squamous cell carcinomas--OC1 and OC2. J Oral Maxillofac Surg 1990;48:385-90
Xu L, Li WJ, Lin DM, Zhang HM, Zou F. Role of calcium dyshomeostasis in 1-methyl-4-phenylpyridinium ion-induced apoptosis of human neuroblastoma SH-SY5Y cells. Nan Fang Yi Ke Da Xue Xue Bao 2013;33:479-85
Yang N, Tang Y, Wang F, Zhang H, Xu D, Shen Y, Sun S, Yang G. Blockade of store-operated Ca2+ entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Lett 2013;330:163-9
Yeh JH, Cheng HH, Huang CJ, Chung HM, Chiu HF, Yang Y L, Yeh MY, Chen WC, Kao CH, Chou CT, Jan CR. Effect of anandamide on cytosolic Ca2+ levels and proliferation in canine renal tubular cells. Basic Clin Pharmacol Toxicol 2006;98:416-22
Zhang JQ, Wu PF, Long LH, Chen Y, Hu ZL, Ni L, Wang F, Chen JG. Resveratrol promotes cellular glucose utilization in primary cultured cortical neurons via calcium-dependent signaling pathway. J Nutr Biochem 2013;24:629-37
Zhang X, Reichart PA. A review of betel quid chewing, oral cancer and precancer in Mainland China. Oral Oncology 2007;43:424-30
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code