Responsive image
博碩士論文 etd-0620114-222848 詳細資訊
Title page for etd-0620114-222848
論文名稱
Title
以低溫低真空製備氧化石墨薄膜並探討其特性及應用
The Characterization and Application Study of Graphite Oxide Thin Films Prepared by Low Temperature and Low Vacuum Environment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-07
繳交日期
Date of Submission
2014-07-23
關鍵字
Keywords
片電阻、旋轉塗佈、氧化石墨、有機光電元件、聚芳香醚高分子
Graphite oxide, Spin-coated, Surface resistance, Organic photoelectric device, Poly (arylene ether) s polymer
統計
Statistics
本論文已被瀏覽 5683 次,被下載 63
The thesis/dissertation has been browsed 5683 times, has been downloaded 63 times.
中文摘要
過去本研究團隊致力於開發功能性聚芳香醚高分子材料,發現以九苯環核心結構之聚芳香醚高分子擁有良好的熱穩定性(Td5%=635℃),以及由熱分析(TGA)指出,在高達800℃的環境底下,此聚芳香醚高分子仍有約70%的殘餘量。經由元素分析儀斷定其殘餘之物質為碳元素,以致於將此為研究的基礎,將聚芳香醚高分子材料調配成溶液態後,以旋轉塗佈(Spin-coated)方式塗佈在石英玻璃上。之後經由高溫爐在環境溫度800℃下,調控成膜的環境與合成材料的分子量,鍛燒成一片完整、均勻、且具有金屬光澤的氧化石墨導電薄膜。對於特性的量測,本研究經由四點探針(Four-point probe)、霍爾量測(Hall measurement)、拉曼光譜儀(Raman spectrum)、二次離子質譜儀(Secondary ion mass spectrometer)…等儀器來探討其特性。
  此方式指出經由製程條件的控制,可以調變氧化石墨的片電阻,由數十至數百歐姆(Ohm)。並且經由濕製程的方式,可以容易地解決目前氧化石墨無法大面積化的問題。對於氧化石墨的電極適任性方面,因為其擁有良好的導電特性以及匹配的功函數,而後本研究也將證實其應用於有機光電元件的可能性。
Abstract
When our research team dedicated to design functional Poly (arylene ether) s polymer material in the past, we found that the Poly(arylene ether)s polymer structure of benzene nine had good thermal stability(Td5%=635℃), and thermogravimetric analyzer(TGA)showed Poly (arylene ether) s polymer still residual amount of about 70% under 800℃ environment. We determined that the residual substance is carbon which is analysed by elemental analyzer so that it become the basis of study. Blending the Poly (arylene ether) s polymer material into solution, and spin-coated on a quartz glass. After heating in 800℃ High-temperature furnace, we regulated spin-coated environment and synthesis of material molecular weight and made an intact and uniformly, metallic luster graphite oxide conductive films. In this study, we used some instruments, including Four-point probe、Hall measurement、Raman spectrum、Secondary ion mass spectrometer…etc to measure the graphite oxide films characteristic.
  This way showed out graphite oxide can be modulated Surface resistance from tens to hundreds of ohms by control process conditions. It could be easily to make large area of graphite oxide by wet process. In the suitable wayward aspects of graphite oxide,because it had good electrical conductivity and match of work function. In the future, this study also be confirmed the possibility in the organic photoelectric device applied.
目次 Table of Contents
致謝 ii
摘要 iv
Abstract v
目錄 vii
圖目錄 xii
表目錄 xix
第一章 緒論 1
1-1 前言 1
1-2 碳的同素異形體 3
1-2-1 無定形碳(Amorphous carbon) 3
1-2-2 奈米碳管(Carbon nanotube) 4
1-2-3 富勒烯(Fullerene) 5
1-2-4 鑽石(Diamond) 6
1-2-5 石墨(Graphite)與石墨烯(Graphene) 7
1-3 石墨烯簡介 9
1-4 氧化石墨烯簡介 12
1-5 石墨烯製備方法 13
1-5-1 膠帶剝離法(Mechanical exfoliation) 13
1-5-2 熱裂解磊晶成長於碳化矽上(Epitaxial grapheme on SiC surfaces after Graphitization) 15
1-5-3 氧化石墨烯還原法(Oxidation) 16
1-5-4 化學氣相沉積法(Chemical Vapor Deposition,CVD) 20
1-6 石墨烯的轉移 28
1-7 石墨烯的應用 29
1-8 文獻回顧及研究動機 32
第二章 實驗儀器及原理 34
2-1 實驗材料分析量測儀器 34
2-1-1 凝膠滲透層析儀(Gel Permeation Chromatography,GPC) 34
2-1-2 熱重量分析儀(Thermogravimetric Analyzer,TGA) 35
2-2 實驗製程儀器 36
2-2-1 超音波震盪機(Ultrasonic Cleaner) 36
2-2-2 磁式旋轉加熱盤(Hot Plate) 37
2-2-3 雷射雕刻機(Laser Etching) 37
2-2-4 旋轉塗佈機(Spin coater) 38
2-2-5 手套箱(Glove box) 39
2-2-6 電漿清洗機(Plasma) 39
2-2-7 高溫爐(Furnace) 41
2-2-8 蒸鍍機(Evaporator) 41
2-3 薄膜電性量測儀 43
2-3-1 四點探針電性量測(Four-Point Probe) 43
2-3-2 霍爾效應(Hall effect) 44
2-4 薄膜表面分析儀 45
2-4-1 拉曼光譜儀(Raman spectrum) 45
2-4-2 X光能譜散佈分析儀(energy dispersive spectrometers,EDS) 46
2-4-3 原子力量子顯微鏡(Atomatic Force Microscopy,AFM) 47
2-5 薄膜深層分析儀 50
2-5-1 二次離子質譜儀(Secondary ion mass spectrometer,SIMS) 50
2-6 薄膜特性量測儀 52
2-6-1 PESA(Photo-electron spectroscopy in air,型號為AC-2) 52
2-6-2 接觸角量測(Contact angle analysis system) 54
2-7 OLED量測分析儀 55
2-7-1 OLED光電特性量測系統(PR650) 55
第三章實驗材料及流程 57
3-1 實驗材料 57
3-1-1 聚芳香醚高分子 57
3-1-2 OLED實驗材料 59
3-2 實驗流程 60
3-2-1 氧化石墨製作流程 60
3-2-2 OLED元件製程 62
第四章 結果與討論 67
4-1 影響薄膜特性因素的探討 67
4-1-1 大氣環境下之薄膜形貌變化 69
4-1-2 氮氣環境下之薄膜形貌變化 71
4-2 不同材料分子量對電性之影響 73
4-2-1 分子量對片電阻影響 77
4-2-2 分子量對導電率影響 80
4-3 EDS 82
4-4 Raman spectrum 85
4-5 SIMS 89
4-6 氧化石墨表面特性量測 92
4-6-1 接觸角量測 92
4-6-2 功函數量測 94
4-6-3 表面粗糙度量測 97
4-7 氧化石墨薄膜應用於上發光OLED元件 100
第五章 結論 107
參考文獻 108
參考文獻 References
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science, 306, 666 (2004).
[2] S.Iijima, Nature, 354, 56 (1991).
[3] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312-1314 (2009).
[4] C. Lee, X. Wei, J. W. Kysar, J. Hone, Science, Vol.321, p.385 (2008).
[5] K. I. Bolotin, K. J. Sikes, Z. Jiang, Solid State Communications., 146, 351 (2008).
[6] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, Phys. Rev. Lett., 100, 016602 (2008).
[7] 工研院電子報,新碳材時代-從奈米碳管到石墨烯,第10004期出報日:2011/04/25.
[8] 世界上最薄的材料-98康熹化學報報 (康熹文化事業股份有限公司). 2009-11, 11月號-洪偉修教授
[9] W. S. Hummers, R. E. Offeman, Chem. Soc., 80, 1339 (1958).
[10] J. Hass, W. A. de Heer, E. H. Conrad, J. Phys.: Condens. Matter, Vol. 20, 323202 (2008).
[11] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud,D. Mayou, T.Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, Science, Vol. 312, 1191 (2006).
[12] D.R. Dreyer, S.Park, C.W. Bielawski, andR.S. Ruoff, Chem. Soc. Rev., 39, 228–240 (2010).
[13] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nature Nanotechnology, Vol. 3, pp.538-542 (2008).
[14] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nature Nanotech., 3, 101 (2008).
[15] M. Chhowalla, K. P. Loh, Q. Bao, and G. Eda, Nature Chem., 1015-1024 (2010).
[16] Hannes C. Schniepp, Je-Luen Li, Michael J. McAllister, Phys. Rev. B., 110, 8525-8539 (2006).
[17] C. Y. Su,Xu Y, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang, and L. J. Li, ACS Nano, 4, 5285 (2010).
[18] P.R. Somani , S.P. Somani, M. Umeno, Chem. Phys. Lett., Vol. 430, 56-59 (2006).
[19] Q. Yu, J.Lian, S. Siriponglert, H. Li, Y.P. Chen, S.-S. Pei, Appl. Phys. Lett., Vol. 93, 113103-3 (2008).
[20] K.S.Kim, Y.Zhao, H.Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi , B. H. Hong, Nature, Vol. 457, 706-710 (2009).
[21] S. J. Chae, F. Gu‥nes﹐, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat, Y. H. Lee, Adv. Mater., Vol. 21, 2328–2333 (2009).
[22] Yong Un Jung, Seok-In Na, Han-Ki Kim, and Seong Jun Kang, American Vacuum Society, 050604 (2012).
[23] Zhouying Zhao,John D. Fite, Pradeep Haldar, and Ji Ung Lee, American Institute of Physics, 063305 (2012).
[24] Dingshan Yu, Yan Yang, Michael Durstock, Jong-Beom Baek,and Liming Dai, American Chemical Society, 5633–5640 (2010).
[25] Zhiyong Liu, Dawei He, Yongsheng Wang, Hongpeng Wu, Jigang Wang, Elsevier, 1036–1039 (2010).
[26] Minas M. Stylianakis, Emmanuel Stratakis, Emmanuel Koudoumas, Emmanuel Kymakis, and Spiros H. Anastasiadis, ACS Appl. Mater, 50, 4144 (2012).
[27] Dingshan Yu, Yan Yang, Michael Durstock, Jong-Beom Baek, and Liming Dai, American Chemical Society, 5633–5640 (2010).
[28] Jun Liu , Yuhua Xue , Yunxiang Gao , Dingshan Yu , Michael Durstock , and Liming Dai, Adv. Mater, 24, 2228–2233 (2012).
[29] Shuping Pang, Yenny Hernandez, Xinliang Feng, and Klaus Müllen, Adv. Mater., 23, 2779–2795 (2011).
[30] Lewis Gomez De Arco, Yi Zhang, Cody W. Schlenker, Koungmin Ryu, Mark E. Thompson, and Chongwu Zhou, ACS Nano, 4 (5), 2865–2873 (2010).
[31] J. Hwang, H. K. Chio, J. Moon, T. Y. Kim, and J. Shin, Materials Research Bulletin, 47, 2796–2799 (2012).
[32] Slonczewski, J. C. &Weiss, P. R. Band, Phys. Rev., 109,272–279 (1958).
[33] G. W Semenoff, Phys. Rev. Lett., 53, 2449–2452 (1984).
[34] 潘扶民, 科儀新知 13(2), 8 (1991).
[35] F. Tuinstra, J. L. Koenig, J., Chem. Phys., 53, 1126 (1970).
[36] A.C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M Lazzeri, F. Mauri, et al., Phys. Rev. Lett., 97, 187401 (2006).
[37] P. Poncharal, A. Ayari, T. Michel, and J.-L. Sauvajol, Phys. Rev. B, 78, 113407 (2008).
[38] Z. Y. Juang, C. Y. Wu, C. W. Lo, W. Y. Chen, C.-F. Huang, and J. C. Hwang, Elsevier, 47, 2026 (2009).
[39] C. Lee, Y. I. Park, J. H. Kwon, and J. W. Park, Bull. Korean Chem. Soc., Vol. 26, No. 9 (2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code