Responsive image
博碩士論文 etd-0620115-161543 詳細資訊
Title page for etd-0620115-161543
論文名稱
Title
利用呼吸圖法製備蜂窩狀多孔性薄膜及其電化學分析;以分子動力模擬研究氮氧自由基高分子刷擴散行為
Fabrication of Honeycomb Films Using Breath Figure Method and Analysis of Its Electrochemical Properties;Study of Nitroxide Radical Polymer Brushes’ Diffusion Behaviors by Molecular Dynamics Simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
252
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-07
繳交日期
Date of Submission
2015-08-10
關鍵字
Keywords
擴散係數、多孔性高分子薄膜、呼吸圖法、分子動力模擬、氮氧自由基高分子
Honeycomb porous polymer film, Breath figure method, Molecular dynamics simulation, Nitroxide polymer, Diffusion coefficient
統計
Statistics
本論文已被瀏覽 5655 次,被下載 13
The thesis/dissertation has been browsed 5655 times, has been downloaded 13 times.
中文摘要
本論文主要為探討(一)氮氧自由基高分子電極表面積與其電化學特性之關聯,以及(二)以分子動力模擬氮氧自由基高分子刷的擴散行為。在第一部分的研究,利用呼吸圖法製備多孔性氮氧自由基高分子電極薄膜電極,以不同比例的CHCl3/CS2作為溶劑,於不同相對濕度下,製備多孔性氮氧自由基材料,光學顯微鏡和電子顯微鏡實驗結果顯示CHCl3 : CS2 = 1:2或1:3,相對濕度為80%時,觀察發現可形成規則的多孔性結構,由循環伏安法之測試結果顯示,此多孔性電極與一般的氮氧自由基高分子電極相似,於0.4-0.5 V (vs. Ag/Ag+)有對稱的氧化還原對,但此多孔性的薄膜電極可增加氧化還原峰訊號可增強約七倍,此結果顯示此多孔性結構可以有效提升氮氧自由基高分子電極的電化學特性。在第二部分的研究是運用分子動力模擬研究高分子刷、溶劑和鹽類的運動行為及擴散行為,經結構最佳化、分子動力模擬可計算不同接枝密度氮氧高分子刷系統之擴散係數。高接枝密度系統和低接枝密度系統的高分子刷擴散系數皆較大,與實驗結果互相符合。
Abstract
This thesis studies (1) the relationship of surface area and electrochemical properties of nitroxide radical polymer electrodes and (2) the simulation of diffusion behaviors of nitroxide radical polymer brushes electrodes by molecular dynamics simulations (MDS). In the first topic, ordering porous nitroxide radical polymer electrodes are fabricated by breath figure method using various ratio of CHCl3 and CS2 as a cosolvent at various relative humidity (RH) levels. The results of optical microscopy and scanning electron microscopy show that ordering porous structures of nitroxide radical polymer are formed in CHCl3:CS2 ratios of 1/2 and 1/3 at a RH of 80%. The results of cyclic voltammetry (CV) show a redox couple at 0.4-0.5 V vs. Ag/Ag+, which is a typical redox of nitroxide radical. Moreover, the current of redox peaks of the ordering porous electrodes are 6 times higher than that of a thin-film solid electrode, which indicates that the porous structure greatly enhances the electrochemical property of nitroxide radical polymer electrodes. In the second topic, diffusion behaviors of nitroxide polymer brushes with different grafting densities are simulated by geometry optimization and MDS. The simulation results show that the nitroxide polymer brushes with high and low grafting densities have a larger diffusion coefficient. These results of the simulation are in good agreement with the results of experiments.
目次 Table of Contents
第壹章 緒論 1
1-1 前言 2
1-2 有機自由基高分子 4
1-2.1 有機自由基分子 4
1-2.2 氮氧自由基高分子 4
1-2.3 有機自由基電池 8
1-3 研究動機 12
1-4 呼吸圖法製備多孔性薄膜 15
1-5 分子動力模擬 (Molecular Dynamics Simulation, MDS) 18
1-5.1 分子動力模擬基本原理 18
1-5.2 作用力場 (Force Field) 21
1-5.3 數值積分法 22
1-5.4 週期性邊界條件 23
第貳章 實驗部分 25
2-1 實驗藥品 26
2-2 實驗儀器 29
2-2.1 多功能高解析掃描式電子顯微鏡 (High-resolution Analytical Scanning Electron Microscope, SEM) 29
2-2.2 原子力顯微鏡 (Atomic Force Microscope, AFM) 31
2-2.3 雙電子槍蒸鍍系統 (Dual E-Beam Evaporator) 33
2-2.4 電化學分析儀 (Electrochemical Chromatography) 35
2-3 有機合成 36
2-3.1 poly(2,2,6,6-Tetramethyl-4-piperidinyl methacrylate) (PTMPM)之合成步驟 36
2-3.2 poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-ylmethacrylate) (PTMA)之合成步驟 37
2-4 工作電極基板製備 38
2-4.1 基板前處理 38
2-4.2 配置PTMA溶液樣品 38
2-4.3 實驗裝置 40
2-5 分子動力模擬系統建構與參數設定 41
2-5.1 建構模擬系統 41
2-5.2 結構最佳化與分子動力模擬參數設定 46
第參章 高分子孔洞薄膜材料製備 與其電化學性質分析 47
3-1 緒論 48
3-2 影響高分子孔洞薄膜之因素 51
3-2.1 溶劑種類與聚合物濃度對孔洞薄膜之影響 51
3-2.2 溫度與濃度對孔洞薄膜之影響 58
3-2.3 相對濕度對孔洞薄膜之影響 63
3-2.4 溶劑比例對孔洞薄膜之影響 75
3-2.5 聚合物添加碳材對孔洞薄膜之影響 78
3-3 電化學性質探討 93
3-3.1 高分子平板薄膜與孔洞薄膜電化學之差異 93
3-3.2 高分子薄膜添加碳材電化學之分析 96
3-4 結論 99
第肆章 探討分子動力模擬研究 高分子刷擴散係數 101
4-1 緒論 102
4-2 分子動力模擬結果與討論 103
4-2.1 模擬系統基板之影響 103
4-2.2 電解液分子於系統中之動態行為 104
4-2.3 不同接枝密度高分子刷擴散係數之探討 106
4-3 模擬數據與實驗結果之比較 108
4-3.1 不同接枝密度系統之擴散係數理論值與實驗值之探討 108
4-4 結論 111
第伍章 結論 113
5-1 結論 114
附錄 116
參考文獻 References
[1] M. Gomberg, Journal of the American chemical Society 1900, 22, 757-771.
[2] K. Oyaizu, A. Hatemata, W. Choi and H. Nishide, Journal of Materials Chemistry 2010, 20, 5404-5410.
[3] K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro and E. Hasegawa, Chemical Physics Letters 2002, 359, 351-354.
[4] J.-K. Kim, J.-H. Ahn, G. Cheruvally, G. S. Chauhan, J.-W. Choi, D.-S. Kim, H.-J. Ahn, S. H. Lee and C. E. Song, Metals and Materials International 2009, 15, 77-82.
[5] Y. Liang, Z. Tao and J. Chen, Advanced Energy Materials 2012, 2, 742-769.
[6] H. Nishide, K. Koshika and K. Oyaizu, Pure and Applied Chemistry 2009, 81, 1961-1970.
[7] H.-Q. Li, Y. Zou and Y.-Y. Xia, Electrochimica Acta 2007, 52, 2153-2157.
[8] K. Oyaizu and H. Nishide, Advanced Materials 2009, 21, 2339-2344.
[9] H. S. Zhou, D. L. Li, M. Hibino and I. Honma, Angewandte Chemie-International Edition 2005, 44, 797-802.
[10] K. Oyaizu, Y. Ando, H. Konishi and H. Nishide, Journal of the American Chemical Society 2008, 130, 14459-14461.
[11] a) J.-K. Kim, G. Cheruvally, J.-W. Choi, J.-H. Ahn, D. S. Choi and C. E. Song, Journal of the Electrochemical Society 2007, 154, A839-A843; b) S. Komaba, T. Tanaka, T. Ozeki, T. Taki, H. Watanabe and H. Tachikawa, Journal of Power Sources 2010, 195, 6212-6217; c) H. Nishide, S. Iwasa, Y. J. Pu, T. Suga, K. Nakahara and M. Satoh, Electrochimica Acta 2004, 50, 827-831.
[12] K. Oyaizu, T. Kawamoto, T. Suga and H. Nishide, Macromolecules 2010, 43, 10382-10389.
[13] J. K. Kim, G. Cheruvally, J. W. Choi, J. H. Ahn, S. H. Lee, D. S. Choi and C. E. Song, Solid State Ionics 2007, 178, 1546-1551.
[14] W. Choi, S. Ohtani, K. Oyaizu, H. Nishide and K. E. Geckeler, Advanced Materials 2011, 23, 4440-4443.
[15] K. Nakahara, J. Iriyama, S. Iwasa, M. Suguro, M. Satoh and E. J. Cairns, Journal of Power Sources 2007, 165, 870-873.
[16] C.-H. Lin, J.-T. Lee, D.-R. Yang, H.-W. Chen and S.-T. Wu, RSC Advances 2015, 5, 33044-33048.
[17] C.-H. Lin, W.-J. Chou and J.-T. Lee, Macromolecular Rapid Communications 2012, 33, 107-113.
[18] Rayleigh, Nature 1991, 2169, 416-417.
[19] G. Widawski, M. Rawieso and B. François, Nature 1994, 369, 387-389.
[20] M. H. Stenzel, Australian Journal of Chemistry 2002, 55, 239-243.
[21] W. Dong, Y. Zhou, D. Yan, Y. Mai, L. He and C. Jin, Langmuir 2009, 25, 173-178.
[22] K. H. Wong, M. Hernandez-Guerrero, A. M. Granville, T. P. Davis, C. Barner-Kowollik and M. H. Stenzel, Journal of Porous Materials 2006, 13, 213-223.
[23] L. V. Govor, I. A. Bashmakov, R. Kiebooms, V. Dyakonov and J. Parisi, Advanced Materials 2001, 13, 588-591.
[24] T. Nishikawa, R. Ookura, J. Nishida, K. Arai, J. Hayashi, N. Kurono, T. Sawadaishi, M. Hara and M. Shimomura, Langmuir 2002, 18, 5734-5740.
[25] a) H. T. Ham, I. J. Chung, Y. S. Choi, S. H. Lee and S. O. Kim, Journal of Physical Chemistry B 2006, 110, 13959-13964; b) W. Sun, Z. Shao and J. Ji, Polymer 2010, 51, 4169-4175.
[26] a) A. Munoz-Bonilla, E. Ibarboure, E. Papon and J. Rodriguez-Hernandez, Journal of Polymer Science Part a-Polymer Chemistry 2009, 47, 2262-2271; b) M. S. Park and J. K. Kim, Langmuir 2004, 20, 5347-5352.
[27] K. Hiwatari, T. Serizawa, F. Seto, A. Kishida, Y. Muraoka and M. Akashi, Polymer Journal 2001, 33, 669-675.
[28] a) D. Beattie, K. H. Wong, C. Williams, L. A. Poole-Warren, T. P. Davis, C. Barner-Kowollik and M. H. Stenzel, Biomacromolecules 2006, 7, 1072-1082; b) K. Manabe, S. Nishizawa and S. Shiratori, ACS Applied Materials & Interfaces 2013, 5, 11900-11905; c) X. Wu and S. Wang, ACS Applied Materials & Interfaces 2012, 4, 4966-4975; d) H. M. Dalton, J. Stein and P. E. March, Biofouling 2000, 15, 83-94; e) X. Jiang, X. Zhou, Y. Zhang, T. Zhang, Z. Guo and N. Gu, Langmuir 2010, 26, 2477-2483; f) M. H. Lu and Y. Zhang, Advanced Materials 2006, 18, 3094-3098.
[29] a) A. Bolognesi, C. Botta and S. Yunus, Thin Solid Films 2005, 492, 307-312; b) H. Yabu, K. Akagi and M. Shimomura, Synthetic Metals 2009, 159, 762-764; c) K. H. Wong, M. H. Stenzel, S. Duvall and F. Ladouceur, Chemistry of Materials 2010, 22, 1878-1891.
[30] a) F. Galeotti, I. Chiusa, L. Morello, S. Giani, D. Breviario, S. Hatz, F. Damin, M. Chiari and A. Bolognesi, European Polymer Journal 2009, 45, 3027-3034; b) L. Li, Y. Zhong, J. Li, J. Gong, Y. Ben, J. Xu, X. Chen and Z. Ma, Journal of Colloid and Interface Science 2010, 342, 192-197.
[31] a) Y. Hirai, H. Yabu, Y. Matsuo, K. Ijiro and M. Shimomura, Chemical Communications 2010, 46, 2298-2300; b) H. Ma and J. Hao, Chemistry-a European Journal 2010, 16, 655-660.
[32] H. Sun, W. Li and L. Wu, Langmuir 2009, 25, 10466-10472.
[33] L. A. Connal, G. V. Franks and G. G. Qiao, Langmuir 2010, 26, 10397-10400.
[34] a) H. Yabu and M. Shimomura, Chemistry of Materials 2005, 17, 5231-5234; b) H. Yabu, M. Takebayashi, M. Tanaka and M. Shimomura, Langmuir 2005, 21, 3235-3237; c) J. Bico, C. Marzolin and D. Quere, Europhysics Letters 1999, 47, 220-226.
[35] A. Bolognesi, F. Galeotti, U. Giovanella, F. Bertini and S. Yunus, Langmuir 2009, 25, 5333-5338.
[36] C. Greiser, S. Ebert and W. A. Goedel, Langmuir 2008, 24, 617-620.
[37] a) M. H.-G. and M. H. Stenzel, Polymer Chemistry 2012, 3, 563-577; b) M. H. Stenzel, C. Barner-Kowollik and T. P. Davis, Journal of Polymer Science Part a-Polymer Chemistry 2006, 44, 2363-2375; c) L.-S. Wan, L.-W. Zhu, Y. Ou and Z.-K. Xu, Chemical Communications 2014, 50, 4024-4039.
[38] a) B. J. Alder and T. E. Wainwright, Journal of Chemical Physics 1959, 31, 459-466; b) B. J. Alder and T. E. Wainwright, Journal of Chemical Physics 1960, 33, 1439-1451; c) J. Irving and J. G. Kirkwood, The Journal of chemical physics 1950, 18, 817-829.
[39] V. Verma and K. Balasubramanian, Materials Science & Engineering C-Materials for Biological Applications 2014, 41, 292-300.
[40] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, Journal of the American Chemical Society 1992, 114, 10024-10035.
[41] a) M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Oxford university press, 1989, p; b) http://www.thp.uni-duisburg.de/vorlesungen/mddft_ss06/mddft_070406.pdf.
[42] a) https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCIQFjAAahUKEwiRxfernPDGAhUCjZQKHbjWAzA&url=http://www.ntsec.gov.tw/FileAtt.ashx?id=2182&ei=dVOwVdG2J4Ka0gS4rYAAw&usg=AFQjCNHnUin_44XM6u13k_vhI4Yl_bOMYg&sig2=vcHRezQVjyJJzJTkF3eVgw; b) https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjACahUKEwjG5ueHnfDGAhVBJZQKHTQWD2A&url=http://120.114.52.240/~T096000036/repository/fetch/%E5%A0%B4%E7%99%BC%E5%B0%84%E5%BC%8F%E6%8E%83%E7%9E%84%E5%BC%8F%E9%9B%BB%E5%AD%90%E9%A1%AF%E5%BE%AE%E9%8F%A1.pdf&ei=NlSwVcbzE8HK0AS0rLyABg&usg=AFQjCNGXpiUZKb44uGygTRwQDoVs77TG6g&sig2=TtMOPtf73yTFfSDoywIGRQ; c) http://khvic.nsysu.edu.tw/khvic/JL/57-1.htm; d) http://khvic.nsysu.edu.tw/khvic/JL/57.htm; e) http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter3_report1.pdf; f) http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf.
[43] a) http://highscope.ch.ntu.edu.tw/wordpress/?p=17916; b) http://web1.knvs.tp.edu.tw/AFM/ch2.htm; c) http://web1.knvs.tp.edu.tw/AFM/ch4.htm; d) http://www.phys.sinica.edu.tw/~nano/article/08.pdf; e) https://en.wikipedia.org/wiki/Atomic_force_microscopy; f) https://zh.wikipedia.org/wiki/原子力显微镜; g) U. Maver, A. Vesel, K. Stana-Kleinschek, M. Gaberšček, M. Mozetič, T. Maver and Z. Peršin, Polymer Characterization with the Atomic Force Microscope, INTECH Open Access Publisher, 2013, chapter 4.
[44] a) http://140.117.32.239/ncfweb/facilities/95_Ebeam_n.htm; b) http://ap.nuk.edu.tw/files/14-1000-355,r17-1.php; c) http://rndc.ntut.edu.tw/ezfiles/22/1022/img/558/167590410.pdf.
[45] a) http://140.136.176.3/joom/data/menu/files/exp/CV; b) http://www.teachers.fju.edu.tw/files/981/981015-1.pdf; c) https://zh.wikipedia.org/wiki/循環伏安法.
[46] http://hpc.buct.edu.cn/docs/2011-06/20110621173435109900.pdf.
[47] S. D. Angus and T. P. Davis, Langmuir 2002, 18, 9547-9553.
[48] a) O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa and T. Hashimoto, Langmuir 2000, 16, 6071-6076; b) N. Maruyama, T. Koito, J. Nishida, T. Sawadaishi, X. Cieren, K. Ijiro, O. Karthaus and M. Shimomura, Thin Solid Films 1998, 327, 854-856; c) Y. Wang, Z. Pan, J. Peng and F. Qiu, Science of Advanced Materials 2015, 7, 848-854; d) S. H. Lee, H. W. Kim, J. O. Hwang, W. J. Lee, J. Kwon, C. W. Bielawski, R. S. Ruoff and S. O. Kim, Angewandte Chemie-International Edition 2010, 49, 10084-10088.
[49] M. Srinivasarao, D. Collings, A. Philips and S. Patel, Science 2001, 292, 79-83.
[50] J. Kim, B. Lew and W. S. Kim, Nanoscale research letters 2011, 6, 1-8.
[51] L. Billon, M. Manguian, V. Pellerin, M. Joubert, O. Eterradossi and H. Garay, Macromolecules 2009, 42, 345-356.
[52] a) C. X. Huang, T. Kamra, S. Chaudhary and X. T. Shen, Acs Applied Materials & Interfaces 2014, 6, 5971-5976; b) R. M. Zhang, J. W. Wang, M. J. Wang and Y. D. He, Journal of Applied Polymer Science 2012, 124, 495-500.
[53] J. Peng, Y. C. Han, Y. M. Yang and B. Y. Li, Polymer 2004, 45, 447-452.
[54] D. Beysens and C. M. Knobler, Physical Review Letters 1986, 57, 1433-1436.
[55] E. Ferrari, P. Fabbri and F. Pilati, Langmuir 2011, 27, 1874-1881.
[56] A. Zhang, C. Du, H. Bai, Y. Wang, J. W. Wang and L. Li, Acs Applied Materials & Interfaces 2014, 6, 8921-8927.
[57] A. Boker, Y. Lin, K. Chiapperini, R. Horowitz, M. Thompson, V. Carreon, T. Xu, C. Abetz, H. Skaff, A. D. Dinsmore, T. Emrick and T. P. Russell, Nature Materials 2004, 3, 302-306.
[58] A. V. Limaye, R. D. Narhe, A. M. Dhote and S. B. Ogale, Physical Review Letters 1996, 76, 3762-3765.
[59] Y. Tian, H. Y. Ding, Q. Z. Jiao and Y. Q. Shi, Macromolecular Chemistry and Physics 2006, 207, 545-553.
[60] a) I. M. Smallwood, Handbook of organic solvent properties 1996; b) W. L. Dilling, N. B. Tefertiller and G. J. Kallos, Environmental Science & Technology 1975, 9, 833-838.
[61] a) http://www.hvac-net.org.tw/archive/files/97_08_19_07.pdf; b) https://en.wikipedia.org/wiki/Vapor_pressure.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code