Responsive image
博碩士論文 etd-0620116-121338 詳細資訊
Title page for etd-0620116-121338
論文名稱
Title
汲極交疊效應對具多晶矽通道之穿隧場效電晶體影響之研究
Investigation of Drain Lapping Effect on Tunnel-FET With Poly-Si Channel Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-15
繳交日期
Date of Submission
2016-07-20
關鍵字
Keywords
穿隧電晶體、交疊效應、雙極性電流、薄膜電晶體、穿隧機制
TFET, TFT, Lapping Effect, Ambipolat current, Tunneling mechanism
統計
Statistics
本論文已被瀏覽 5637 次,被下載 2449
The thesis/dissertation has been browsed 5637 times, has been downloaded 2449 times.
中文摘要
本實驗分兩大部分,汲極與閘極的正交疊(Overlap)以及負交疊(Underlap)之電性曲線及其溫度效應。製程中,利用摻雜不同的汲極長度,使其與閘極作交疊結構。
在有Overlap的情況下,不管是Ion或Ioff電流都隨Overlap交疊量而略微相依,且對於溫度較不敏感;在有Underlap的情況下,不管是Ion或Ioff電流,與Underlap交疊量及溫度都很敏感。
而在文中,透過電性曲線以及能帶圖,可以做為輔助解釋這些現象。Overlap時,受Overlap交疊量影響,是因為存在著PN接面,而Overlap交疊量影響了部份阻值改變,使得穿隧處得到的橫向電場變大,導致穿隧電流略為提升,而其溫度略微提升可能是因TAT機制或能隙下降的關係。Underlap時,則受Underlap交疊量影響,是因為Underlap區是一個本質區的參與,載子受Trap影響的路徑增加,造成載子遷移率下降,而升溫後,Trap效應應該要減弱讓電流提升,但卻發現電流衰退的更嚴重,也對Underlap區的長度更敏感,因此推斷,穿隧電流在Underlap區發生複合效應,導致電流降低,而最後穿隧載子全被複合無法到達汲極端,只剩本質空乏區中的生產電流。
從有Overlap結構中,可以得知具多晶矽通道的穿隧電晶體不易受尺寸改變。而有Underlap結構的,因為在汲極與通道接面有本質區的參與,可以有效降低反向偏壓的雙極性電流,但同時也會衰退Ion,且對溫度敏感。
Abstract
The purpose of the research was to study the drain lapping effect of tunneling field-effect transistors (TFETs) with polycrystalline-silicon (poly-Si) channel.
The transfer characteristics of source to gate overlap 2m and different drain to gate lapping length indicated that overlap is not sensitive to overlap length and measurement temperature. For this reason, the TFETs with poly-Si channel device have strong immunity against the short channel effect.
When the tunneling field-effect transistors reverse turn on, the carrier transport behavior starts with tunneling of channel/drain junction. However, the underlap region of drain to gate builds the intrinsic depletion region between the channel and drain. The underlap structure can reduce the ambipolar current of tunneling field-effect transistors. There are many traps at the poly-Si intrinsic depletion region which make the carrier mobility degradation. By the higher measurement temperature, the transfer characteristics indicated that there is another reason to lead the current decrease obviously. The recombination current is significant effect of this case.
The TFETs with poly-Si channel with lapping structure have potential to study, in order to find the best carrier transport behavior.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
第一章 緒論 1
第二章 文獻回顧 6
2-1 前言 6
2-2 晶粒邊界 7
2-2-1 晶粒介紹 7
2-2-2 晶粒影響與改善 8
2-3 多晶矽薄膜電晶體 8
2-3-1 傳統多晶矽薄膜電晶體(Conventional Thin-Film Transistor, C-TFT) 9
2-3-2 多晶矽穿隧薄膜電晶體(poly-Si Tunnel Thin-Film Transistor, poly-Si T-TFT) 9
2-4 穿隧原理 10
2-4-1 單晶矽穿隧電晶體(Tunnel MOSFET, T-FET) 10
2-4-2 多晶矽穿隧薄膜電晶體(poly-Si Tunnel Thin-Film Transistor, poly-Si T-TFT) 11
2-5漏電流機制 11
2-5-1 多晶矽薄膜電晶體(poly-Si Thin-Film Transistor, TFT) 12
2-5-2 多晶矽穿隧薄膜電晶體(poly-Si Tunnel Thin-Film Transistor, poly-Si T-TFT) 12
2-5-3 生產與複合電流(Generation and Recombination Cuurent) 13
2-6 短通道效應 13
2-7 多晶矽穿隧薄膜電晶體的改善 14
2-8 穿隧電晶體汲極的交疊效應 15
第三章 參數定義及實驗步驟 31
3-1 量測方式及參數定義 31
3-1-1 量測方式 31
3-1-2 交疊長度 31
3-1-3 開啟狀態下的電流(Ion) 32
3-1-4 關閉狀態下的電流(Ioff) 32
3-2 實驗步驟 33
3-2-1 實驗步驟 33
第四章 結果與討論 40
4-1 電性分析與溫度效應 40
4-2 開啟狀態 40
4-2-1 On-State之Overlap效應 41
4-2-2 On-State之Underlap效應 41
4-3 關閉狀態 42
4-3-1 Off-State之Overlap效應 42
4-3-2 Off-State之Underlap效應 43
第五章 結論 51
參考文獻 52
參考文獻 References
[1] The Nobel Prize in Physics 1956. Nobelprize.org. Nobel Media AB. [7 December 2014].
[2] S. M. Sze , ”Four Decades of Developments in Microelectronics:Achievements and challenges,” Lecture note at Peking University
[3] R. R. Schaller, “Moore's law: Past, present, and future,” IEEE Spectr., vol. 34, pp. 52-59, Jun. 1997.
[4] The Nobel Prize in Physics 1973. Nobelprize.org. Nobel Media AB 2014. [7 Jun 2016].
[5] H. Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice-Hall, 2001
[6] M. Yam, “Infineon Tests 3D Packaging with Multi-gate FinFETs,” Daily Tech, Dec. 2006, Availabel: http://www.dailytech.com/Infineon+Tests+3D+Packaging+with+Multigate+FinFETs/article5208.htm#sthash.tsN9CA1q.dpuf
[7] Iaroslav, “Monitor technology overview for graphic designers,” Available: http://astutegraphics.com/blog/monitor-technology-overview-for-graphic-designers/.
[8] J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys., vol. 46, pp. 5247-5254, Jul. 1975.
[9] G. Baccarani, B. Ricco, and G. Spadini, “Transport properties of polycrystalline silicon films,” J. Appl. Phys., vol. 49, pp. 5565- 5570, Nov. 1978.
[10] I. W. Wu, T. Y. Huang, W. B. Jackson, A. G. Lewis, and A. C. Chiang, “Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation,” IEEE Electron Device Lett., vol. 12, pp. 181-183, Apr. 1991.
[11] W.C.-Y. Ma, S.-W. Yuan, T.-C. Chan, and C.-Y. Huang, “Threshold voltage reduction and mobility improvement of LTPS-TFTs with NH3 plasma treatment,” IEEE Trans. Plasma Sci., vol. 42, pp. 3722-3725, Dec. 2014.
[12] J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett., vol. 90, pp. 262106-1, Jun. 2007.
[13] T. Matsuyama, M. Tanaka, S. Tsuda, S. Nakano, and Y. Kuwano, “Improvement of n-type poly-Si film properties by solid phase crystallization method,” Jpn. J. Appl. Phys., vol. 32, pp. 3720-3728, Sep. 1993.
[14] T. Sameshima, M. Hara, and S. Usui, “XeCl excimer laser annealing used to fabricate poly-Si TFT’s,” Jpn. J. Appl. Phys., vol. 28, pp. 1789-1793, Oct. 1989.
[15] S. Y. Yoon, S. K. Kim, J. Y. Oh, Y. J. Choi, W. S. Shon, C. O. Kim, and J. Jang, “A high-performance polycrystalline silicon thin-film transistor using metal-induced crystallization with Ni solution,” Jpn. J. Appl. Phys., vol. 37, pp. 7193-7197, Dec. 1998.
[16] S.-W. Lee, and S.-K. Joo, “Low temperature poly-Si thin film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, pp. 160-162, Apr. 1983.
[17] B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W.-J. Qi, C. Kang, and J. C. Lee, “Characteristics of TaN gate MOSFET with ultrathin hafnium oxide (8 Å-12 Å),” in IEDM Tech. Dig., pp. 39-42, Dec. 2000.
[18] S. A. Campbell, D. C. Gilmer, X.-C. Wang, M.-T. Hsieh, H.-S. Kim, W. L. Gladfelter, and J. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Electron Devices, vol. 44, pp. 104, Jan. 1997.
[19] N. Li, E. S. Harmon, J. Hyland, D. B. Salzman, T. P. Ma, Y. Xuan, and P. D. Ye, “Properties of InAs metal–oxide–semiconductor structure with atomic-layer-deposited Al2O3 dielectric,” Appl. Phys. Lett., vol. 92, pp. 143507-1, Apr. 2008.
[20] M. Youm, H. S. Sim, H. Jeon, S. Kim, and Y. T. Kim., “Metal oxide semiconductor field effect transistor characteristics with iridium gate electrode on atomic layer deposited ZrO2 high-k dielectrics,” Jpn. J. Appl. Phys., vol. 42, pp. 5010-5013, Aug. 2003.
[21] J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, “Strain dependence of the performance enhancement in strained-Si n-MOSFETs,” in IEDM Tech. Dig., pp. 373-376, Dec. 1994.
[22] K. Rim, J. Welser, J. L. Hoyt, and J. F. Gibbons, “Enhanced hole mobilities in surface-channel strained-Si pMOSFETs,” in IEDM Tech. Dig., 1995, pp. 517-520, Dec. 1995.
[23] L. Pham-Nguyen, C. Renouillet-Beranger, G. Ghibaudo, T. Skotnicki, and S. Cristoloveanu, “Mobility enhancement by CESL strain in shortchannel ultrathin SOI MOSFETs,” Solid-State Electron., vol. 54, pp. 123-130, Feb. 2010.
[24] C. Y. Cheng, Y. K. Fang, J. C. Hsieh, H. Hsia, Y. M. Sheu, W. T. Lu, W. M. Chen, and S. S. Lin, “Investigation and localization of the SiGe source/drain (S/D) strain-induced defects in pMOSFETs with 45-nm CMOS technology,” IEEE Electron Device Lett., vol. 28, pp. 408- 411, May 2007.
[25] K. W. Ang, K. J. Chui, V. Bliznetsov, A. Du, N. Balasubramanian, M. F. Li, G. Samudra, and Y.-C. Yeo, “Enhanced performance in 50 nm N-MOSFETs with silicon-carbon source/drain regions,” in IEDM Tech. Dig., pp. 1069-1071, Dec. 2004.
[26] K. Jeon , W.-Y. Loh , P. Patel , C. Y. Kang , J. Oh , A. Bowonder , C. Park , C. S. Park , C. Smith , P. Majhi , H.-H. Tseng , R. Jammy , T.-J. K. Liu, and C. Hu, “Si tunnel transistors with a novel silicided source and 46 mV/dec swing,” Proc. Symp. VLSI Techol., pp. 121-122, Jun. 2010.
[27] P. K. Chu, S. Qin, C. Chan, N. W. Cheung, and L. A. Larson, “Plasma immersion ion implantation—A fledgling technique for semiconductor processing,” Mater. Sci. Eng.: Rep., vol. 17, pp. 207-280, Nov. 1996.
[28] K. R. Olasupo, and M. K. Hatalis, “Leakage current mechanism in submicron polysilicon thin-film transistors,” IEEE Trans. Electron. Devices, vol. 43, pp. 1218-1223, Aug. 1996.
[29] J. Knoch, S. Mantl, and J. Appenzeller, “Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices,” Solid-State Electron, vol. 51, pp. 572-578, Apr. 2007.
[30] A. Vandooren, A. M. Walke, A. S. Verhulst, R. Rooyackers, N. Collaert, and A. V. Y. Thean, “Investigation of the subthreshold swing in vertical tunnel-FETs using H2 and D2 anneals,” IEEE Trans. Electron Devices, vol. 61, pp. 359-364, Feb. 2014.
[31] M. Reiche, M. Kittler, W. Erfurth, E. Pippel, K. Sklarek, H. Blumtritt, A. Hähnel, and H. Übensee, “On the electronic properties of a single dislocation,” J. Appl. Phys., vol. 115, pp. 194303, May. 2014.
[32] H. Hraziia, A. Vladimirescu, A. Amara, and C. Anghel, “An analysis on the ambipolar current in Si double-gate tunnel FETs,” Solid-State Electron., vol. 70, pp. 67-72, Apr. 2012.
[33] D. A. Neamen, Semiconductor Physics and Devices, 2012, McGraw-Hill
[34] C. Y. Huang, “Study of Tunnel Field-Effect Transistors With Different Poly-Si Channel Thickness,” 國立中山大學碩士論文, 103學年度.
[35] J. Appenzeller, “Carbon nanotubes for high-performance electronics—Progress and prospect,” Proc. IEEE, vol. 96, pp. 201-211, Feb. 2008.
[36] Intel, Available: http://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=11374., July. 2015
[37] A. M. Ionescu, and H. Riel, "Tunnel field-effect transistors as energyefficient electronics switches,” Nature, vol. 479, pp. 329-337, Nov. 2011.
[38] G. Klimeck, “Nanoelectronic Modeling: From Quantum Mechanics and Atoms to Realistic Devices,” Available: https://nanohub.org/resources/8086., 2010.
[39] J.H. Chen, S.C. Wong, and Y.H. Wang, “An analytic three-terminal band-to-band tunneling model on GIDL in MOSFET,” IEEE Trans. Electron Devices, vol. 48, no. 7, pp. 1400-1405, Jul. 2001.
[40] V. A. Tiwari, R. Divakaruni, T. B. Hook, and D. R. Nair, “Effects of trap-assisted tunneling on gate-induced drain leakage in silicon-germanium channel p-type FET for scaled supply voltages,” Jpn. J. Appl. Phys., vol. 55, pp. 04ED03-1 ,Mar. 2016.
[41] B. G. Streetman, Solid State Electronic Devices, 1990, Prentice-Hall
[42] Y. Taur, and T. H. Ning, "3" in Fundamentals of Modern VLSI Devices, pp. 180, 1998, Cambridge Univ. Press.
[43] S. Yuan, “Study of Tunnel Field-Effect Transistors With Different Poly-Si Crystallization Method,” 國立中山大學碩士論文, 103學年度.
[44] Y.-R. Jhan, “Low-temperature microwave annealing for tunnel field-effect transistor,” IEEE Electron Device Lett., vol. 36, pp. 105-107, Feb. 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code