Responsive image
博碩士論文 etd-0620116-143641 詳細資訊
Title page for etd-0620116-143641
論文名稱
Title
多孔性碳材用於鋰硫電池正極材料
Porous carbon materials for lithium–sulfur battery cathodes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-18
繳交日期
Date of Submission
2016-08-04
關鍵字
Keywords
鋰離子二次電池、多孔性碳材、正極材料、靜電紡絲、鋰硫電池
Electrospinnig, Lithium-ion secondary battery, Cathode material, Lithium–sulfur battery, Porous carbon material
統計
Statistics
本論文已被瀏覽 5665 次,被下載 71
The thesis/dissertation has been browsed 5665 times, has been downloaded 71 times.
中文摘要
本論文主要研究將多孔性碳材料應用於鋰硫電池中並且研究其電化學特性,首先將不同重量比例的Polyacrylonitrile ( PAN ) 與Polymethylmathacrylate ( PMMA ) 混和再利用靜電紡絲法製成奈米纖維,之後再鍛燒形成多孔性碳纖維,並且利用掃描式電子顯微鏡 ( SEM ) 以及穿透式電子顯微鏡 ( TEM ) 觀察纖維表面的孔洞結構,比表面積及孔洞分析儀 ( BET ) 分析纖維的孔洞數據,之後將多孔性碳纖維與硫形成硫-碳複合材料,再利用X光繞射儀 ( XRD ) 分析前後訊號變化,確認硫是否裝載於多孔性碳纖維中,之後進行電化學測試,我們發現了多孔性碳纖維能有效的降低電池的內阻,且在0.1 C的放電條件下具有越高比表面積的多孔性碳纖維具有越大的電容量,我們也將由國立台北科技大學材料科學與工程研究所李嘉甄教授實驗室提供的多孔性碳球製成硫-碳複合材料並進行電化學測試,在0.1 C的放電條件下其電容量可達958 mAh/g。
Abstract
We applied porous carbon materials to lithium–sulfur batteries and measured electrochemical properties in this thesis. First of all, we mixed polyacrylonitrile ( PAN ) and polymethylmathacrylate ( PMMA ) in different weight ratio then made nanofibers by electrospinning and formed porous carbon fiber by carbonization. The structure of porous carbon nanofibers were shown by scanning electron microscope ( SEM ) and transmission electron microscope ( TEM ), and the surface properties were analyzed by Brunauer Emmet Teller ( BET ) techniques. After that synthesized sulfur-porous carbon composite materials and defineded by X-ray diffraction ( XRD ). In electrochemical measurements show that the porous carbon materials can reduce the battery impedance effectively. When the specific surface area of porous carbon fiber increase, we can get better capacity at 0.1 C-rate. We also analyzed the electrochemical measurements of porous carbon sphere which from National Taipei University of Technology Prof. Chia-Chen Li. The results show the discharge capacity is 958 mAh/g at 0.1 C-rate.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
謝誌 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
第二章 文獻回顧 3
2-1 鋰離子電池 4
2-1.1 研究歷史 4
2-1.2 工作原理 4
2-1.3 鋰離子電池正極材料比較 6
2-2 鋰硫電池 7
2-2.1 硫 ( Sulfur ) 7
2-2.2 工作原理 8
2-2.3 Shuttle phenomenon 9
2-2.4 正極材料 10
2-3 靜電紡絲 13
2-3.1 研究歷史 13
2-3.2 工作原理 14
2-3.3 實驗參數 16
2-3.4 高分子的碳化 19
2-4 研究動機 20
第三章 實驗方法 21
3-1 實驗藥品材料以及器材 22
3-2 樣品分析儀器 24
3-2.1 電化學分析儀 24
3-2.2 高解析掃描式電子顯微鏡 ( High-resolution Analytical Scanning Electron Microscope, SEM ) 27
3-2.3 比表面積及孔洞分析儀 ( Brunauer-Emmett-Teller ( BET ) Surface Area Analysis ) 29
3-2.4 解析型穿透式電子顯微鏡 ( Analytical Transmission Electron Microscope, TEM ) 30
3-2.5 X光繞射儀 ( X-Ray Diffraction, XRD ) 31
3-3 實驗步驟 32
3-3.1 硫-多孔性碳纖維複合材料 32
3-3.2 硫-多孔性碳球複合材料 34
第四章 結果討論 36
4-1 多孔性碳材之結構分析 37
4-1.1 多孔性碳纖維 37
4-1.2 多孔性碳球 42
4-2 硫-碳複合材料分析 45
4-2.1 硫-多孔性碳纖維複合材料 45
4-2.2 硫-多孔性碳球複合材料 46
4-3 電化學分析 47
4-3.1 循環伏安法 47
4-3.2 充放電曲線比較 48
4-3.3 交流阻抗比較 51
4-3.4 不同放電速率比較 52
4-3.5 循環壽命比較 54
4-4 充放電前後電池結構檢測 56
第五章 總結 58
第六章 參考文獻 60
第七章 附錄 64
7-1 多孔性碳球應用於超級電容 65
7-1.1 簡介 65
7-1.2 實驗步驟 65
7-1.3 結果討論 67
參考文獻 References
[1] M. S. Whittingham, science 1976, 192, 1126-1127.
[2] http://nm.ecnu.edu.cn/likunpan/Research-LIB.htm.
[3] A. Manthiram, Y. Fu, S. H. Chung, C. Zu and Y. S. Su, Chem Rev 2014, 114, 11751-11787.
[4] X. Ji and L. F. Nazar, J. Mater. Chem. 2010, 20, 9821.
[5] P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J. M. Tarascon, Nat Mater 2012, 11, 19-29.
[6] Y. Diao, K. Xie, S. Xiong and X. Hong, J. Electrochem. Soc. 2012, 159, A421.
[7] Y. V. Mikhaylik, Electrolytes for Lithium Sulfur Cells. U.S.Patent 7,358,012, April 315, 2008.
[8] S. Xiong, K. Xie, Y. Diao and X. Hong, Electrochim. Acta 2012, 83, 78-86.
[9] X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang and X. Wu, J. Power Sources 2011, 196, 9839-9843.
[10] Y. Liu, H. Zhan and Y. Zhou, Electrochim. Acta 2012, 70, 241-247.
[11] H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui and H. Dai, Nano Lett. 2011, 11, 2644-2647.
[12] C. Jia-jia, J. Xin, S. Qiu-jie, W. Chong, Z. Qian, Z. Ming-sen and D. Quan-feng, Electrochim. Acta 2010, 55, 8062-8066.
[13] J. Y. X. J. Yang, N.X. Xu, Y. Li,J.L. Wang, Electrochem.Commun 2002, 4, 499.
[14] G. Xu, B. Ding, P. Nie, L. Shen, H. Dou and X. Zhang, ACS Appl. Mat. lnterfaces 2014, 6, 194-199.
[15] a) C. Wang, J.-j. Chen, Y.-n. Shi, M.-s. Zheng and Q.-f. Dong, Electrochim. Acta 2010, 55, 7010-7015; b) M. Rao, W. Li and E. J. Cairns, Electrochem.Commun 2012, 17, 1-5.
[16] J. Y. Wang, J.; Xie, J.; Xu, N, Adv. Mater 2002, 14.
[17] J. Wang, J. Chen, K. Konstantinov, L. Zhao, S. H. Ng, G. X. Wang, Z. P. Guo and H. K. Liu, Electrochim. Acta 2006, 51, 4634-4638.
[18] F. Wu, J. Chen, L. Li, T. Zhao and R. Chen, J. Phys. Chem. C 2011, 115, 24411-24417.
[19] A. Gorkovenko, U.S. Patent 6,210,831,April 213, 2001.
[20] M.-S. H. Song, S.-C.; Kim, H.-S.; Kim, J.-H.; Kim, K.-T.; and Y.-M. A. Kang, H.-J.; Dou, S. X.; Lee, J.-Y., J. Electrochemical. Soc 2004, 151, A791.
[21] Y. Hwa, J. Zhao and E. J. Cairns, Nano Lett 2015, 15, 3479-3486.
[22] a) A. Formhals, US patent 1,975,504, 1934; b) A. Formhals, US patent, 2,187,306, 1940; c) A. Formhals, US patent, 2,349,950, 1944.
[23] B. Vonnegut and R. L. Neubauer, J. Colloid Sci 1952, 7, 616-622.
[24] G. V. Drozin, J. Colloid Sci. 1955, 10, 158-164.
[25] S. HL., US patent 3,280,229, 1966.
[26] K. P. Baumgarten, J. Colloid Interface Sci. 1971, 36, 71-79.
[27] Z.-M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna, Compos. Sci. Technol. 2003, 63, 2223-2253.
[28] http://www.che.ncsu.edu/khangroup/research.html.
[29] https://en.wikipedia.org/wiki/Electrospinning.
[30] A. Koski, K. Yim and S. Shivkumar, Mater. Lett. 2004, 58, 493-497.
[31] J.M. Deitzel, J. Kleinmeyer, D. Harris and N.C.B. Ten, Polymer 2001, 42, 261-272.
[32] S. Megelski, J. S. Stephens, D. B. Chase and J. F. Rabolt, Macromolecules 2002, 35, 8456-8466.
[33] M. M. Demir, I. Yilgor, E. Yilgor and B. Erman, Polymer 2002, 43, 3303-3309.
[34] O. Toprakci, L. Ji, Z. Lin, H. A. K. Toprakci and X. Zhang, J. Power Sources 2011, 196, 7692-7699.
[35] C. G. Zoski, Elsevier: Amsterdam; Boston, 2007.
[36] http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/
download/equipment/EM/FE-SEM/FE-SEM005.pdf.
[37] http://www.18show.cn/zt312565/zh-tw/Article_133072.html.
[38] http://highscope.ch.ntu.edu.tw/wordpress/?p=1599.
[39] http://www.eaglabs.com.tw/xrd.html.
[40] S. S. Zhang, J. Power Sources 2013, 231, 153-162.
[41] S. S. Zhang, K. Xu and T. R. Jow, Electrochim.Acta 2004, 49, 1057-1061.
[42] H. S. Ryu, Z. Guo, H. J. Ahn, G. B. Cho and H. Liu, J. Power Sources 2009, 189, 1179-1183.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code