Responsive image
博碩士論文 etd-0620116-175148 詳細資訊
Title page for etd-0620116-175148
論文名稱
Title
無規共聚磺酸化聚芳香醚於燃料電池質子交換膜之合成及研究
Synthesis and Investigation of Random Sulfonated poly(arylene ether)s for Proton Exchange Membrane Fuel Cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-19
繳交日期
Date of Submission
2016-07-20
關鍵字
Keywords
燃料電池、質子交換膜、無規共聚高分子、碳氫離子性高分子
fuel cells, hydrocarbon, random copolymer, proton exchange membrane
統計
Statistics
本論文已被瀏覽 5708 次,被下載 0
The thesis/dissertation has been browsed 5708 times, has been downloaded 0 times.
中文摘要
本論文主要合成一系列磺酸化無規共聚碳氫離子性高分子並研究結構、型態與質子導電度的關係。以自製多苯環芳香族單體4,4'-difluoro-2',3',5',6' -tetraphenyl-[1,1',4',1']-quinquephenyl與2',3',5'-triphenyl- [1,1';4',1';4',1';4',1' -quinquephenyl]-4,4'-diol以及市售Bisphenol AF單體經親核性聚縮合反應而得,並調控不同單體之進料比,隨後進行磺酸化並澆鑄成膜,得到離子交換能力(ion exchange capacity,IEC)介於2.8~3.4 mmol/g的磺酸化高分子薄膜。熱穩定性方面,高分子的熱裂解溫度547OC~569OC,磺酸化高分子的熱裂解溫度則隨著IEC增加而下降,介於203OC~254OC之間。在30OC下,薄膜的吸水率介於79%~237%,隨著溫度的升高,在80OC時,吸水率隨之上升到122%~314%之間,部分高IEC的薄膜因吸水率過高而溶解於水中。在80 °C、40% 相對濕度的環境下質子導電度約為5~21 mS/cm之間,而在80 °C、95% 相對濕度的環境下,質子導電度高則達199~354 mS/cm,表現出相當優異的質子傳遞能力。經由穿透式電子顯微鏡(TEM)亦可觀察到磺酸化高分子薄膜的微結構呈現良好的微相分離型態,離子團簇大小約為5nm~25nm之間。由於部分磺酸化高分子薄膜因過度膨潤在高溫高濕環境下會溶於水中,未來將製備低磺酸化程度的高分子,使這系列材料可以應用於燃料電池質子交換膜。
Abstract
In this thesis, a series of sulfonated random hydrocarbon copolymers were synthesized, and their proton conductivities, molecular conformation also were examined. The polymers were prepared by polymerization of commercialized Bisphenol AF with two novel monomers, 4,4'-difluoro-2',3',5',6'-tetraphenyl-[1,1',4',1']-quinque phenyl, with different ratio of 2',3',5'-triphenyl-[1,1';4',1';4',1';4',1'-quinque phenyl]-4,4'-diol. Subsequent sulfonation and solution casting provided membranes possessing ion exchange capacities ranging from 2.8 to 3.4 mmol/g. The sulfonated polymers exhibited excellent proton conductivities ranged between 5 to 21 mS/cm at 80 oC/40% RH, and 199 to 354 mS/cm at 80 oC/95% RH. Moreover, the decomposition temperature (Td5%) of unsulfonated copolymers ranged between 547 oC to 569 oC and sulfonated copolymers ranged between 203 oC ~254 oC. TEM analysis of the polymers, in the dehydrated state, revealed isolated spherical aggregates of ions, which presumably coalesce when hydrated to provide highly conductive pathways. Especially, some of sulfonated membranes dissolves when immersed into the water at high temperature. It is because those membranes have too much sulfonate group in the structure. We will prepare sulfonated membrane with lower IEC value, making this series of copolymer could be application for proton exchange membrane fuel cell.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 序論 1
1-1 前言 1
1-2 燃料電池之種類 2
1-2-1 低溫型燃料電池 2
1-2-2 中、高溫型燃料電池 2
1-3 質子交換膜燃料電池 5
1-3-1 質子交換膜燃料電池之基本構造 5
1-3-2 質子交換膜燃料電池之工作原理 6
1-4 質子傳導機制 7
1-4-1 Grotthus Mechanism (Hopping mechanism) 7
1-4-2 Vehicular Mechanism 8
1-4-3 Surface Mechanism 8
1-5 質子交換膜燃料電池種類 9
1-5-1 全氟離子性高分子薄膜(Perfluorinated polymer membrane) 10
1-5-2 非氟離子性高分子薄膜(Non-Perfluorinated polymer membrane) 10
1-5-3部分含氟離子性高分子薄膜(Partially fluorinated polymer membrane) 11
1-5-4酸鹼混摻高分子薄膜(Acid-base blends polymer membrane) 11
1-5-5有機/無機混成薄膜(organic/inorganic blend membrane) 12
1-6 高分子結構設計 13
1-6-1 交替式共聚高分子(Alternating copolymer) 14
1-6-2 無規共聚型高分子(Random copolymer) 14
1-6-3 接枝式共聚高分子(Graft copolymer) 14
1-6-4 嵌段式共聚高分子(Block copolymer) 15
1-7 文獻回顧 16
1-7-1 交替式共聚高分子文獻回顧 16
1-7-2 無規共聚高分子文獻回顧 18
1-7-3 接枝式共聚高分子文獻回顧 20
1-7-4 嵌段式共聚高分子文獻回顧 21
1-8 研究動機 24
第二章 儀器介紹 26
2-1 鑑定分析儀器 26
2-1-1 高磁場液態核磁共振儀(Nuclear Magnetic Resonance,NMR) 26
2-1-2 基質輔助雷射脫附游離飛行質譜儀(MALDI TOF/TOF) 26
2-1-3凝膠滲透層析儀(Gel Permeation Chromatography,GPC) 27
2-1-4 傅立葉紅外線光譜儀(Fourier Transform infrared spectroscopy,FT-IR) 27
2-2 熱分析儀器 27
2-2-1 熱重量分析儀(Thermogravimetric Analyzer,TGA) 27
2-2-2 熱示差掃描卡量計(Differential Scanning Calorimetr,DSC) 28
2-2-3 熱機械分析儀(Thermal Mechanical Analyzer,TMA) 28
2-3 微觀結構分析 29
2-3-1 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 29
2-4 磺酸化薄膜之電性量測 29
2-4-1 交流阻抗分析儀(AC Impedance) 29
第三章 實驗 30
3-1 實驗藥品 30
3-2 實驗流程 32
3-2-1 單體製備 32
3-2-2 高分子聚合及磺酸化 33
3-3 二氟單體合成 34
3-3-1 (step1) 1,3-bis(4-bromophenyl)propan-2-one 34
3-3-2 (step2) 2,5-bis(4-bromophenyl)-3,4-diphenylcyclopenta-2,4-dienone 35
3-3-3 (step3-1) 4,4'-Dibromo-2',3',5',6'-tetraphenyl-[1,1;4,1]-terphenyl 36
3-3-4 (step4-1) 4,4'-Dihydroxy-2',3',5',6'-tetraphenyl-[1,1',4',1']-quinquephenyl 37
3-4 二醇單體合成 39
3-4-1 (step3-2) 4,4'-Dibromo-2',3',5'-triphenyl-[1,1;4,1]-terphenyl 39
3-4-2 (step4-2)4,4'-Dimethoxy-2',3',5'-triphenyl-1,1';4',1';4',1';4',1'- quinquephenyl 40
3-4-3 (step5-2) 2',3',5'-triphenyl-[1,1';4',1';4',1';4',1'-quinquephenyl]-4,4' '-diol 42
3-5 高分子聚合 43
3-5-1 X1聚合 43
3-5-2 高分子成膜 45
3-6 高分子磺酸化[42] 46
3-7 磺酸化後之材料處理 47
3-7-1 磺酸化高分子成膜 47
3-7-2 離子交換能力(IEC)滴定 47
3-7-3吸水率、尺寸安定性及λ值(Water Uptake, Dimensional Stability, and Hydration number) 48
第四章 結果與討論 49
4-1 材料結構鑑定 49
4-1-1 GPC分析 49
4-1-2 IEC數值滴定 49
4-1-3 1H NMR圖譜分析 50
4-1-4 傅立葉紅外線光譜(FT-IR)分析 52
4-2 熱分析及機械性質分析 56
4-2-1 TGA熱穩定性分析 56
4-3磺酸化薄膜之物理、化學性質分析 58
4-3-1 薄膜吸水率、尺寸安定性及λ值 58
4-3-2 薄膜氧化及水解穩定性 59
4-4磺酸化薄膜之電性及微相分離型態分析 60
4-4-1 薄膜質子導電度分析 60
4-4-2 TEM分析 62
4-4-3 薄膜密度量測 64
第五章 結論 65
第七章 附錄 70
參考文獻 References
[1] 綠色能源產業資訊網: http://www.taiwangreenenergy.org.tw/
[2] 台灣燃料電池資訊網: http://www.tfci.org.tw/
[3] Wang, Yun, et al. "A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research." Applied Energy 88, 981-1007, 2011.
[4] http://designer.mech.yzu.edu.tw/Default.aspx
[5] http://www.fuelcelltoday.com/technologies/pemfc
[6] Peckham, Timothy J., and Steven Holdcroft. "Structure‐morphology‐property relationships of non‐perfluorinated proton‐conducting membranes." Advanced materials 22, 4667-4690, 2010.
[7] Jiao, Kui, and Xianguo Li. "Water transport in polymer electrolyte membrane fuel cells." Progress in Energy and Combustion Science 37, 221-291, 2011.
[8] Higashihara, Tomoya, Kazuya Matsumoto, and Mitsuru Ueda. "Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells."Polymer 50, 5341-5357, 2009.
[9] Slade, S., et al. "Ionic conductivity of an extruded Nafion 1100 EW series of membranes." Journal of The Electrochemical Society 149.12 (2002): A1556-A1564.
[10] Feng, Sinan, et al. "Concentrated sulfonated poly (ether sulfone) s as proton exchange membranes." Journal of Power Sources 224, 42-49, 2013.
[11] De Almeida, S. H., and Y. Kawano. "Thermal behavior of Nafion membranes."Journal of Thermal Analysis and Calorimetry 58, 569-577, 1999.
[12] Rikukawa, M., and K. Sanui. "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers." progress in polymer science25, 1463-1502, 2000.
[13] Schmidt-Rohr, Klaus, and Qiang Chen. "Parallel cylindrical water nanochannels in Nafion fuel-cell membranes." Nature materials 7, 75-83, 2008.
[14] Chang, Ying, et al. "Aromatic ionomers with highly acidic sulfonate groups: acidity, hydration, and proton conductivity." Macromolecules 44, 8458-8469, 2011.
[15] Kreuer, K. D. "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells." Journal of membrane science 185, 29-39, 2001.
[16] Siu, Ana, et al. "Dependence of methanol permeability on the nature of water and the morphology of graft copolymer proton exchange membranes." Journal of Polymer Science Part B: Polymer Physics 44, 2240-2252, 2006.
[17] Smitha, B., S. Sridhar, and A. A. Khan. "Solid polymer electrolyte membranes for fuel cell applications—a review." Journal of membrane science 259, 10-26, 2005.
[18] Laberty-Robert, C., et al. "Design and properties of functional hybrid organic–inorganic membranes for fuel cells." Chemical Society Reviews 40.2 (2011): 961-1005.
[19] Hill, Jonathan P., et al. "Self-assembly: from amphiphiles to chromophores and beyond." Molecules 19, 8589-8609, 2014.
[20] Mai, Yiyong, and Adi Eisenberg. "Self-assembly of block copolymers."Chemical Society Reviews 41, 5969-5985, 2012.
[21] Matsumoto, Kazuya, et al. "Sulfonated poly (ether sulfone) s with binaphthyl units as proton exchange membranes for fuel cell application." Journal of Polymer Science Part A: Polymer Chemistry 47, 5827-5834, 2009.
[22] Tanaka, Manabu, et al. "Synthesis and properties of anion conductive ionomers containing fluorenyl groups for alkaline fuel cell applications." Polymer Chemistry 2, 99-106, 2011.
[23] Miyatake, Kenji, Byungchan Bae, and Masahiro Watanabe. "Fluorene-containing cardo polymers as ion conductive membranes for fuel cells."Polymer Chemistry 2, 1919-1929, 2011.
[24] Lim, Youngdon, et al. "High efficiency of proton transport by clustering nanochannels in multi-sulfonated propeller-like nonplanar hexaphenylbenzene poly (ether sulfone) s." International Journal of Hydrogen Energy 39, 2756-2766, 2014.
[25] Lim, Young-Don, et al. "Synthesis and properties of cis/trans mixtures of bis (4-hydroxyphenyl)-1, 2-diphenylethylene containing sulfonated poly (ethersulfone) s proton exchange membranes." International Journal of Hydrogen Energy 38, 7667-7673, 2013.
[26] Seo, Dong Wan, et al. "Preparation and characterization of sulfonated poly (tetra phenyl ether ketone sulfone) s for proton exchange membrane fuel cell."international journal of hydrogen energy 37, 6140-6147, 2012.
[27] Pang, Jinhui, et al. "Poly (aryl ether ketone) containing flexible tetra-sulfonated side chains as proton exchange membranes." Polymer Chemistry 5, 1477-1486, 2014.
[28] Chen, Dongyang, et al. "Novel polyaromatic ionomers with large hydrophilic domain and long hydrophobic chain targeting at highly proton conductive and stable membranes." Journal of Materials Chemistry 21, 12068-12077, 2011.
[29] Wang, Chenyi, et al. "Poly (arylene ether sulfone) proton exchange membranes with flexible acid side chains." Journal of membrane science 405, 68-78, 2012.
[30] Li, Nanwen, et al. "Polymer Electrolyte Membranes Derived from New Sulfone Monomers with Pendent Sulfonic Acid Groups†." Macromolecules 43, 9810-9820, 2010.
[31] Jutemar, Elin Persson, and Patric Jannasch. "Locating sulfonic acid groups on various side chains to poly (arylene ether sulfone) s: Effects on the ionic clustering and properties of proton-exchange membranes." Journal of Membrane Science 351, 87-95, 2010.
[32] Bae, Byungchan, Kenji Miyatake, and Masahiro Watanabe. "Synthesis and properties of sulfonated block copolymers having fluorenyl groups for fuel-cell applications." ACS applied materials & interfaces 1, 1279-1286, 2009.
[33] Bae, Byungchan, Kenji Miyatake, and Masahiro Watanabe. "Sulfonated poly (arylene ether sulfone ketone) multiblock copolymers with highly sulfonated block. Synthesis and properties." Macromolecules 43, 2684-2691, 2010.
[34] Li, Nanwen, et al. "A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers." Energy & Environmental Science 5, 5346-5355, 2012.
[35] http://web.svdcc.fju.edu.tw/~bio/excel/content05/html/50.htm
[36] http://www.pidc.org.tw/zh-tw/Pages/default.aspx
[37] http://www.toray.cn/trc/kinougenri/zairyou/zai_007.html
[38] http://www.pidc.org.tw/zh-tw/Pages/default.aspx
[39] http://www.perkinelmer.com/tw/
[40] http://www.fuelcells.org.tw/
[41] http://www.keysight.com/main/home.jspx
[42] Yen, Ying-Chieh, et al. "The effect of sulfonic acid groups within a polyhedral oligomeric silsesquioxane containing cross-linked proton exchange membrane."Polymer 51, 84-91, 2010.
[43] Foster, Norman C., and M. W. Rollock. "Medium to Very High Active Single Step Neutralization." Chemithon, Seattle, WA 1997.
[44] Ye, Yun-Sheng, et al. "Sulfonated poly (ether ether ketone) membranes crosslinked with sulfonic acid containing benzoxazine monomer as proton exchange membranes." Polymer 50, 3196-3203, 2009.
[45] Lee, Hsu‐Feng, et al. "Synthesis and proton conductivity of sulfonated, multi‐phenylated poly (arylene ether) s." Journal of Polymer Science Part A: Polymer Chemistry 52, 2579-2587, 2014.
[46] Kim, Dae Sik, et al. "Copoly (arylene ether) s Containing Pendant Sulfonic Acid Groups as Proton Exchange Membranes†† NRCC Publication No. 50899."Macromolecules 42, 957-963, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.27.244
論文開放下載的時間是 校外不公開

Your IP address is 3.141.27.244
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code