Responsive image
博碩士論文 etd-0620116-232453 詳細資訊
Title page for etd-0620116-232453
論文名稱
Title
甘藷抗壞血酸過氧化酶 SPAPX 及還原態抗壞血酸延緩 NaCl 誘導的葉片老化過程
Ascorbate peroxidase SPAPX and reduced ascorbate alleviate NaCl-mediated leaf senescence in sweet potato
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-19
繳交日期
Date of Submission
2016-07-21
關鍵字
Keywords
抗壞血酸、抗壞血酸過氧化酶、NaCl、葉片老化、甘藷
Ascorbate, NaCl, Leaf senescence, Ascorbate peroxidase, Sweet potato
統計
Statistics
本論文已被瀏覽 5705 次,被下載 105
The thesis/dissertation has been browsed 5705 times, has been downloaded 105 times.
中文摘要
抗壞血酸過氧化酶 ( ascorbate peroxidase; APX ) 是穀胱甘肽-抗壞血酸循環的主要酵素之一,可利用還原態抗壞血酸清除活性氧族達到細胞內H2O2的動態平衡,因此抗壞血酸過氧化酶及抗壞血酸在生長發育過程與環境逆境適應扮演重要角色。本實驗室先前從甘藷葉片分離出一個ethephon可誘導之抗壞血酸過氧化酶 SPAPX,外加SPAPX融合蛋白或還原態抗壞血酸皆可延緩ethephon誘導的葉片老化過程。本研究繼續先前的成果探討甘藷抗壞血酸過氧化酶SPAPX及還原態抗壞血酸與NaCl逆境下葉片老化過程是否有關。以製備的anti-SPAPX多株抗體進行西方墨點雜交結果顯示,抗壞血酸過氧化酶SPAPX表現量在自然老化、ethephon或NaCl誘導的老化葉片中稍微減少,與葉片老化程度略呈負相關。NaCl逆境下會促進甘藷葉片老化過程,可由老化相關標幟 ( marker ) 的表現包括葉片外觀形態黃化、葉綠素和Fv/Fm含量下降、H2O2及MDA含量增加證實。外加SPAPX融合蛋白則呈劑量依賴性地延緩NaCl逆境下甘藷葉片老化過程,若將SPAPX融合蛋白外加前先以95℃或anti-SPAPX抗體使之不活化,則會廢止其影響,回復NaCl逆境下促進甘藷葉片老化過程。外加SPAPX融合蛋白並無顯著影響黑暗下甘藷葉片老化過程。外加還原態抗壞血酸亦呈劑量依賴性地延緩NaCl逆境下甘藷葉片老化過程。根據這些結果結論甘藷抗壞血酸過氧化酶SPAPX及還原態抗壞血酸可延緩NaCl逆境下甘藷葉片老化過程。也建議甘藷抗壞血酸過氧化酶SPAPX需要NaCl而非黑暗可誘導的交互作用因子與之協力合作,以延緩NaCl逆境下甘藷葉片老化過程。
Abstract
Ascorbate peroxidase ( APX ) is one of the key enzymes of the glutathione-ascorbate cycle. It utilizes the reduced ascorbate to scavenge the reactive oxygen species and maintains the cellular H2O2 homeostasis. Therefore, it plays an important role in association with developmental response and stress adaptation. In our laboratory, an ethephon-inducible ascorbate peroxidase SPAPX has been cloned. Exogenous application of the SPAPX fusion protein and reduced ascorbate alleviate NaCl-promoted leaf senescence. In this research the main issue focuses on whether the cloned sweet potato SPAPX and reduced ascorbate can modulate NaCl-promoted leaf senescence. Western blot hybridization with the anti-SPAPX antibody showed that the level of ascorbate peroxidase SPAPX in natural, ethephon and NaCl-mediated senescent leaves was slightly reduced and negatively correlated with the level of leaf senescence. NaCl stress promoted leaf senescence demonstrated with senescence-associated markers, including leaf yellowing, reduced chlorophyll content and Fv/Fm level, elevated H2O2 and MDA amounts. Exogenous SPAPX fusion protein mitigated NaCl-promoted leaf senescence dose-dependently, which could be abolished and reversed by inactivation of the SPAPX fusion proteins using 95℃ and anti-SPAPX antibody pre-treatment. Exogenous SPAPX fusion protein did not significantly affect leaf senescence under the dark. Exogenous reduced ascorbate, however, also attenuated NaCl-promoted leaf senescence dose-dependently. Based on these results, sweet potato ascorbate peroxidase SPAPX and reduced ascorbate attenuate NaCl-promoted leaf senescence. It also suggests that ascorbate peroxidase SPAPX requires NaCl but not dark inducible interacting components for efficient attenuation of NaCl-mediated leaf senescence.
目次 Table of Contents
論文審定書………………………………………………………………… i
誌謝………………………………………………………………………… ii
中文摘要…………………………………………………………………… iii
英文摘要…………………………………………………………………… iv
目錄………………………………………………………………………… v
圖次………………………………………………………………………… viii
縮寫表……………………………………………………………………… x
壹、緒論…………………………………………………………………… 1
甘藷………………………………………………………………………… 1
葉片老化…………………………………………………………………… 1
NaCl逆境與葉片老化……………………………………………………… 2
乙烯與NaCl逆境………………………………………………………… … 4
穀胱甘肽–抗壞血酸循環…………………………………………………… 5
抗壞血酸過氧化酶與還原態抗壞血酸…………………………………… 6
研究動機與目的…………………………………………………………… 7
貳、實驗材料與方法……………………………………………………… 8
A. 實驗材料………………………………………………………………… 8
甘藷………………………………………………………………………… 8
相關基因、融合蛋白及抗體……………………………………………… 8
B. 實驗方法………………………………………………………………… 9
實驗流程…………………………………………………………………… 9
NaCl處理…………………………………………………………………… 10
SPAPX融合蛋白處理……………………………………………………… 10
還原態抗壞血酸處理……………………………………………………… 11
Ethephon、SPAPX融合蛋白及anti-SPAPX抗體處理………………… 12
葉綠素測量………………………………………………………………… 13
Fv/Fm測量………………………………………………………………… 13
DAB染色分析……………………………………………………………… 13
H2O2測量…………………………………………………………………… 14
MDA測量…………………………………………………………………… 14
SPAPX融合蛋白的誘導與純化…………………………………………… 15
SPAPX融合蛋白的誘導及萃取…………………………………………… 15
以Ni-NTA His*Bind Resin親和性管柱層析純化SPAPX融合蛋白……… 15
Anti-SPAPX抗體製備……………………………………………………… 16
葉蛋白質粗萃取…………………………………………………………… 17
蛋白質定量………………………………………………………………… 17
SDS-PAGE電泳分析……………………………………………………… 18
西方墨點雜交 ( Western blot hybridization ) …………………………… 20
Total RNA extraction……………………………………………………… 21
RT-PCR……………………………………………………………………… 23
PCR………………………………………………………………………… 23
Image J定量分析…………………………………………………………… 24
統計方法…………………………………………………………………… 24
參、結果…………………………………………………………………… 25
SPAPX融合蛋白的純化及anti-SPAPX多株抗體製備…………………… 25
甘藷抗壞血酸過氧化酶SPAPX表現量與自然的、ethephon或NaCl誘導的
葉片老化程度呈負相關性………………………………………………… 25
外加SPAPX融合蛋白延緩鹽分誘導的甘藷葉片老化…………………… 28
失活的SPAPX融合蛋白喪失延緩鹽分逆境誘導的甘藷葉片老化過程… 29
外加SPAPX融合蛋白亦延緩ethephon誘導的甘藷葉片老化…………… 30
外加SPAPX融合蛋白對黑暗誘導的甘藷葉片老化過程無顯著影響…… 31
外加還原態抗壞血酸延緩NaCl逆境誘導的甘藷葉片老化過程………… 31
肆、討論…………………………………………………………………… 33
NaCl逆境促進甘藷葉片老化過程及老化相關指標表現………………… 33
甘藷葉片抗壞血酸過氧化酶SPAPX表現量與自然葉片老化、ethephon或
NaCl逆境誘導的葉片老化程度呈負相關………………………………… 33
甘藷抗壞血酸過氧化酶SPAPX只有一個isoform………………………… 34
外加SPAPX融合蛋白顯著降低老化相關指標表現並且有效延緩NaCl逆境
誘導的甘藷葉片老化……………………………………………………… 34
SPAPX融合蛋白有效延緩ethephon誘導的甘藷葉片老化,可作為NaCl逆
境處理的正對照組………………………………………………………… 35
SPAPX需要與ethephon或NaCl可誘導的因子交互作用以延緩甘藷葉片老
化…………………………………………………………………………… 35
外加還原態抗壞血酸有效延緩NaCl逆境誘導的甘藷葉片老化………… 36
伍、參考文獻……………………………………………………………… 37
參考文獻 References
林哲緯,定性分析一個參與在乙烯及鹽分逆境誘導甘藷葉片老化的calmodulin. 2011. 國立中山大學生物科學系研究所碩士論文
黃琴淑,還原態穀胱甘肽及NADPH氧化酶抑制劑DPI減緩乙烯誘導甘藷葉片老化、H2O2含量上升及老化相關基因表現. 2011. 國立中山大學生物科學系研究所碩士論文
賴佳甫,選殖的甘藷第二群半胱胺酸蛋白酶抑制劑差異性調節 ethephon 及 NaCl 誘導的葉片老化. 2014. 中山大學生物科學系研究所學位論文
劉純雅,選殖的甘藷抗壞血酸過氧化酶SPAPX延緩ethephon誘導的葉片老化過程. 2014. 國立中山大學生物科學系研究所碩士論文
顏珮勳,還原態穀胱苷肽延緩乙烯或 NaCl 誘導的甘藷葉片老化及可能機制探討. 2015. 中山大學生物科學系研究所學位論文
Asada K. Ascorbate peroxidase–a hydrogen peroxide‐scavenging enzyme in plants. Physiol Plant 1992; 85: 235-241.
Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 1999; 50: 601-639.
Bhattacharjee S. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 2005; 89: 1113-1121.
Blokhina O, Virolainen E, and Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 2003; 91: 179-194.
Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 2012; 35: 1011-1019.
Chen HJ, Huang YH, Huang GJ, Huang SS, Chow TJ, Lin YH. Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence. J Plant Physiol 2015; 180: 1-17.
Chen HJ, Lin ZW, Huang GJ, Lin YH. Sweet potato calmodulin SPCAM is involved in salt stress-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. J Plant Physiol 2012a; 169: 1892-1902.
Chen HJ, Wu SD, Huang GJ, Shen CY, Afiyanti M, Li WJ, Lin YH. Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. J Plant Physiol 2012b; 169: 86-97.
Chen L, Song Y, Li S, Zhang L, Zou C, Yu D. The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 2012c; 1819: 120–128.
de Oliveira AB, Gomes-Filho E, and Alencar NLM. Comparison between the water and salt stress effects on plant growth and development. 2013. S. Akinci (Ed.). INTECH Open Access Publisher.
Eltelib HA, Fujikawa Y, Esaka M. Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. S Afr J Bot 2012; 78: 295–301.
Gallie DR. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 2013; 64: 433-443.
Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot 2008; 59: 3039-3050.
Guan Q, Wang Z, Wang X, Takano T, Liu S. A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. J Plant Physiol 2015; 175: 183–191.
Huang CY, Wen L, Juang RH, Sheu DC, Lin CT. Monodehydroascorbate reductase cDNA from sweet potato: expression and kinetic studies. Bot Stud 2010; 51: 37-44.
Hung SH, Yu CW, and Lin CH. Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin 2005; 46: 10.
Jimenez A, Hernandez JA, del Río LA, Sevilla F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 1997; 114: 275-284.
Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 2008; 63: 224-231.
Lim PO, Kim HJ, Gil Nam H. Leaf senescence. Annu Rev Plant Biol 2007; 58: 115-136.
Lin KH, Pu SF. Tissue-and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. Biol Plant 2010; 54: 664-670.
Lopez F, Vansuyt G, Casse‐Delbart F, and Fourcroy P. Ascorbate peroxidase activity, not the mRNA level, is enhanced in salt‐stressed Raphanus sativus plants. Physiol Plant 1996; 97: 13-20.
Lu Z, Liu D, Liu S. Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 2007; 26: 1909-1917.
Lutts S, Kinet JM, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 1996; 78: 389-398.
Madhaiyan M, Poonguzhali S, Ryu J, Sa T. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 2006; 224: 268-278.
Madhusudhan R, Ishikawa T, Sawa Y, Shigeoka S, Shibata H. Characterization of an ascorbate peroxidase in plastids of tobacco BY‐2 cells. Physiol Plant 2003; 117: 550-557.
Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 2005; 444: 139-158.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci 2004; 9: 490-498.
Mohamed HE, Hemeida AE, Mohamed AG. Role of hydrogen peroxide pretreatment on developing antioxidant capacity in the leaves of tomato plant (Lycopersicon esculentum) grown under saline stress. Int J Adv Res 2015; 3: 878-879.
Munns R. Comparative physiology of salt and water stress. Plant, Cell Environ 2002; 25: 239-250.
Murgia I, Tarantino D, Vannini C, Bracale M, Caravieri S, Soave C. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 2004; 38: 940–953.
Nakano Y, Asada K. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 1987; 28: 131-140.
Noctor G, Foyer CH.. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 1998; 49: 249-279.
Noodén LD, Guiamét JJ, John I. Senescence mechanisms. Physiol Plant 1997; 101: 746-753.
Otegui MS, Noh YS, Martínez DE, Vila Petroff MG, Andrew Staehelin L, Amasino RM, Guiamet JJ. Senescence‐associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. The Plant Journal 2005; 41: 831-844.
Poór P, Szopkó D, Tari I. Ionic homeostasis disturbance is involved in tomato cell death induced by NaCl and salicylic acid. In Vitro Cell Dev Biol Plant 2012; 48: 377-382.
Shalata A, and Neumann PM. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 2001; 52: 2207-2211.
Sharma P, Dubey RS. Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 2004; 167: 541-550.
Shi WM, Muramoto Y, Ueda A, Takabe T. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 2001; 273: 23-27.
Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 2002; 53: 1305-1319.
Smart, CM. Gene expression during leaf senescence. New Phytol 1994; 126: 419-448.
Verslues PE, Agarwal M, Katiyar‐Agarwal S, Zhu J, Zhu JK. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal 2006; 45: 523-539.
Villareal RL, Tsou SC, Lo HF, Chiu SC. Sweet potato tips as vegetables. In Sweet potato: proceedings of the first international symposium/edited by RL Villareal, TD Griggs. 1982. Shanhua, Taiwan: Asian Vegetable Research and Development Center.
Wang J, Zhang H, Allen RD. Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 1999; 40: 725-732.
Wang KLC, Li H, Ecker JR. Ethylene Biosynthesis and Signaling Networks. The Plant Cell 2002; 14.suppl 1: 131-151.
Wang R, Chen S, Zhou X, Shen X, Deng L, Zhu H, Hüttermann A. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 2008; 28: 947-957.
Wei-Feng XU, Wei-Ming SHI, Ueda A, Takabe T. Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere 2008; 18: 486-495.
Welinder KG. Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 1992; 2: 388-393.
Yang TH, Blackwell RQ. Nutritional evaluation of diets containing varying proportions of rice and sweet potato. 1966. In Proc. Eleventh Pacific Set. Congress. Japan. nl.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code