Responsive image
博碩士論文 etd-0620117-042038 詳細資訊
Title page for etd-0620117-042038
論文名稱
Title
開發以多聚腺苷為基礎之螢光感測器
Development of polyadenosine-based fluorescent sensors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-18
繳交日期
Date of Submission
2017-07-21
關鍵字
Keywords
肝素、pH值感測器、DNA、協同作用、酵素系統、c-di-AMP
DNA, pH sensor, enzyme system, cooperativity, heparin, c-di-AMP
統計
Statistics
本論文已被瀏覽 5676 次,被下載 24
The thesis/dissertation has been browsed 5676 times, has been downloaded 24 times.
中文摘要
(一)、開發以多聚腺苷為基礎之螢光探針利用腺嘌呤鹼基對檢測可逆pH值變化;應用於感測酵素受質系統與酵素邏輯閘中
本篇研究中,我們在寡核苷酸polyA序列兩端進行修飾5’-Cy3螢光團/3’-BHQ2消光團,作為對pH值變化靈敏(0.2 pH unit)的螢光探針。在酸性條件下,poly A產生質子化,形成腺嘌呤-腺嘌呤(AH+–H+A)鹼基配對,在單股polyA序列內部形成短的雙股區域,導致Cy3與BHQ2彼此靠近,發生FRET現象,進而影響螢光強度下降。反之,在鹼性條件下,polyA序列的質子化比例降低,造成內部雙股區域氫鍵的作用力減弱,呈現單股無規則捲曲形式,導致Cy3與BHQ2彼此遠離,產生螢光回復的現象。利用可見光紫外光分光光譜儀(UV–VIS)觀察不同pH值條件下的轉化溫度(Melting point),以及圓二色光譜儀(CD)探討poly A構型變化,並配合螢光光譜儀(FL)說明S-form形成機制。接著將所開發的螢光探針運用在酵素反應系統中,像是尿素酶水解尿素、乙酰膽鹼酯酶引導乙酰硫代膽鹼水解、以及葡萄糖氧化酶催化的葡萄糖氧化,改變溶液原有pH值,影響polyA探針的螢光強度,進一步對受質定量並設計一系列之邏輯閘。

(二)、利用協同效應改善聚腺苷之螢光感測器偵測肝素之靈敏度與反應時間
在本篇研究中,我們利用變構效應( Allosteric effectors )與協同效應( Cooperativity effectors )的概念,運用於DNA為基礎所設計的螢光探針偵測heparin,作為訊號放大且提升反應速率的一種手段。並以c-di-AMP代替heparin抓取寡核苷酸polyA序列中月牙形分子coralyne。比較溶液中存在/未存在polyT序列兩條件下的Km、Kd、kobs變化。成功地以Km、Kd、kobs與反應時間證實,加入polyT序列對於寡核苷酸螢光感測器偵測heparin與c-di-AMP之靈敏度與反應速率造成影響,達到改善偵測系統的效果。
Abstract
(A) Oligonucleotide-Based Fluorescent Probe for Reversible pH Sensing Based on Protonated Adenine-Adenine Base Pairing; Applications to Sensing of Enzyme-Substrate System and Enzymatic Logic Gates
In this study, oligonucleotide polyA sequence was modified at both ends with 5'-Cy3 fluorophore / 3'-BHQ2 as the fluorescent probe to detect pH change (0.2 pH unit). At acidic pH conditions, polyA was protonated forms a short double strand in a single strand of polyA by adenine-adenine (AH + -H + A) base pairing, resulting in Cy3 and BHQ2 close to each other, the occurrence of FRET phenomenon led to fluorescence intensity quenched. On the contrary, under alkaline conditions, the proportion of polyA protonation is reduced, and the internal double bond region weakened, showing a random coil conformation, resulting in Cy3 and BHQ2 away from each other and fluorescence back. The UV-VIS spectroscopy was used to observe the effect of different pH (Melting point), and circular dichroism spectroscopy (CD) to explore the poly A configuration changes, and with coupled Fluorescence Spectrometer (FL) illustrates the S-form formation mechanism. The developed fluorescent probe is then applied to the enzyme reaction system, such as urease-catalyzed hydrolysis of urea, acetylcholinesterase-mediated hydrolysis of acetylthiocholine, glucose oxidasecatalyzed oxidation of glucose, change the original pH value of the solution, affect the fluorescence intensity of polyA probe, further quantify the target and design a series of logic gates.

(B) Using cooperativity improve polyadenosine-based fluorescent sensor for sensitivity and reaction time of heparin
In this study, we used the concept of allosteric effectors and cooperativity effects, which are used in DNA-based fluorescent probes to detect heparin as a method of amplifying and increasing the rate of reaction. Use c-di-AMP instead of heparin to capture oligonucleotides in the polyA sequence of crescent-shaped molecule coralyne. To compare the changes of Km, Kd, kobs in the presence or absence of polyT sequences in the solution. We successfully comfirme the concept of allosteric effectors and cooperativity effects by Km, Kd, kobs and reaction time. The addition of polyT sequence to oligonucleotide fluorescence sensor to improve the effectiveness of detection system to obtain nice sensitivity and response rate of heparin and c-di-AMP.
目次 Table of Contents
目錄
論文審定書ⅰ
公開授權書ⅱ
摘要ⅲ
目錄 vi
圖次 viii
表次 xi
第一章、開發以多聚腺苷為基礎之螢光探針利用腺嘌呤鹼基對檢測可逆pH值變化;應用於感測酵素受質系統與酵素邏輯閘中 1
一、前言 1
二、實驗部分 3
2-1 實驗藥品 3
2-2 儀器裝置 6
2-3 樣品配置方法 7
三、實驗結果與討論 12
3-1 A-motif為基礎pH感測器之設計、回應、以及機制 12
3-2 探討pH值對於polyA熔點影響 18
3-3 探討pH值對於polyA構型影響 20
3-4 證實fold-back A-motifs形成 22
3-5 探討NaCl對於探針螢光強度影響 23
3-6偵測glucose樣品測試 32
3-7偵測glucose之選擇性測試 36
3-8偵測acetylthiocholine chloride樣品測試 38
3-9偵測paraoxon樣品與真實樣品測試 38
3-10偵測urea樣品測試 48
3-11偵測urea之選擇性測試 52
3-12利用酵素系統對探針進行循環測試 52
3-13邏輯閘之設計 55
四、結論 58
五、參考文獻 60
第二章、利用協同效應改善聚腺苷之螢光感測器偵測肝素之靈敏度與反應時間 67
一、前言 67
二、實驗部分 69
2-1 實驗藥品 69
2-2 儀器裝置 70
2-3 樣品配置方法 71
2-4 實驗步驟與過程 72
三、實驗結果與討論 75
3-1 已協同效應概念為基礎提升感測器靈敏度之設計、回應、以及機制 75
3-2 以Km、Kd、kobs探討有無T30序列之影響 82
3-3 錯合物對於葡萄糖胺多聚醣分子之選擇性 85
3-4 以c-di-AMP代替heparin 87
四、結論 91
五、參考文獻 93
參考文獻 References
1. Zhong, S.; Fu, Z.; Tan, Y.; Xie, Q.; Xie, F.; Zhou, X.; Ye, Z.; Peng, G.; Yin, D., 5‐Chloro‐7‐iodo‐8‐quinolinolatomanganese (III) with the Feature of pH‐Regulated Molecular Switches as a Highly Efficient Catalyst for Epoxidation of Olefins with Hydrogen Peroxide. Adv. Synth. Catal. 2008, 350, 802-806.
2. Dobson, C. M., Protein folding and misfolding. Nature 2003, 426, 884-890.
3. Tews, I.; Findeisen, F.; Sinning, I.; Schultz, A.; Schultz, J. E.; Linder, J. U., The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 2005, 308, 1020-1023.
4. Nishi, T.; Forgac, M., The vacuolar (H+)-ATPases—nature's most versatile proton pumps. Nat Rev Mol Cell Biol. 2002, 3, 94-103.
5. Liu, R.; Liu, L.; Liang, J.; Wang, Y.; Wei, Y.; Gao, F.; Gao, L.; Gao, X., Detection of pH Change in Cytoplasm of Live Myocardial Ischemia Cells via the ssDNA-SWCNTs Nanoprobes. Anal. Chem. 2014, 86, 3048-3052.
6. Moore, R. D., The role of intracellular pH in insulin action and in diabetes mellitus. Curr. Top. Membr. 1986, 26, 263-290.
7. Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L., Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer. 2011, 11, 671-677.
8. Koh, W. C. A.; Choe, E. S.; Lee, D. K.; Chang, S.-C.; Shim, Y.-B., Monitoring the activation of neuronal nitric oxide synthase in brain tissue and cells with a potentiometric immunosensor. Biosens. Bioelectron. 2009, 25, 211-217.
9. Yang, M.; Zhang, X.; Liu, H.; Kang, H.; Zhu, Z.; Yang, W.; Tan, W., Stable DNA Nanomachine Based on Duplex–Triplex Transition for Ratiometric Imaging Instantaneous pH Changes in Living Cells. Anal. Chem. 2015, 87, 5854-5859.
10. Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K., Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J. Phys. Chem. C 2010, 114, 7421-7426.
11. Rani, R. A.; Sidek, O. In ISFET pH sensor characterization: towards biosensor microchip application, TENCON 2004. 2004 IEEE Region 10 Conference, IEEE: 2004; pp 660-663.
12. Lee, M. H.; Han, J. H.; Lee, J. H.; Park, N.; Kumar, R.; Kang, C.; Kim, J. S., Two‐Color Probe to Monitor a Wide Range of pH Values in Cells. Angew. Chem. Int. Ed. 2013, 52, 6206-6209.
13. Madhu, S.; Rao, M. R.; Shaikh, M. S.; Ravikanth, M., 3, 5-Diformylboron dipyrromethenes as fluorescent pH sensors. Inorg. Chem. 2011, 50, 4392-4400.
14. Yu, X.-J.; McGourty, K.; Liu, M.; Unsworth, K. E.; Holden, D. W., pH sensing by intracellular Salmonella induces effector translocation. Science 2010, 328, 1040-1043.
15. He, C.; Lu, K.; Lin, W., Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 2014, 136, 12253-12256.
16. Søndergaard, R. V.; Henriksen, J. R.; Andresen, T. L., Design, calibration and application of broad-range optical nanosensors for determining intracellular pH. Nat. Protoc. 2014, 9, 2841-2858.
17. Wang, X. d.; Meier, R. J.; Wolfbeis, O. S., Fluorescent pH‐Sensitive Nanoparticles in an Agarose Matrix for Imaging of Bacterial Growth and Metabolism. Angew. Chem. Int. Ed. 2013, 52, 406-409.
18. Medintz, I. L.; Stewart, M. H.; Trammell, S. A.; Susumu, K.; Delehanty, J. B.; Mei, B. C.; Melinger, J. S.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H., Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nature Mater. 2010, 9, 676-684.
19. Ji, X.; Palui, G.; Avellini, T.; Na, H. B.; Yi, C.; Knappenberger Jr, K. L.; Mattoussi, H., On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine. J. Am. Chem. Soc. 2012, 134, 6006-6017.
20. Ma, X.; Wang, Y.; Zhao, T.; Li, Y.; Su, L.-C.; Wang, Z.; Huang, G.; Sumer, B. D.; Gao, J., Ultra-pH-sensitive nanoprobe library with broad pH tunability and fluorescence emissions. J. Amer. Chem. Soc. 2014, 136, 11085-11092.
21. Johnston, A. P.; Caruso, F., Stabilization of DNA multilayer films through oligonucleotide crosslinking. Small 2008, 4, 612-618.
22. Colominas, C.; Luque, F. J.; Orozco, M., Tautomerism and protonation of guanine and cytosine. Implications in the formation of hydrogen-bonded complexes. JACS 1996, 118, 6811-6821.
23. Holm, A. I.; Nielsen, L. M.; Kohler, B.; Hoffmann, S. V.; Nielsen, S. B., Electronic coupling between cytosine bases in DNA single strands and i-motifs revealed from synchrotron radiation circular dichroism experiments. PCCP 2010, 12, 3426-3430.
24. Petrovic, A. G.; Polavarapu, P. L., Structural transitions in polyriboadenylic acid induced by the changes in pH and temperature: vibrational circular dichroism study in solution and film states. J. Phys. Chem. B. 2005, 109, 23698-23705.
25. Li, T.; Famulok, M., I-motif-programmed functionalization of DNA nanocircles. J. Am. Chem. Soc. 2013, 135, 1593-1599.
26. Modi, S.; Swetha, M.; Goswami, D.; Gupta, G. D.; Mayor, S.; Krishnan, Y., A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nature Nanotech. 2009, 4, 325-330.
27. Liu, H.; Xu, Y.; Li, F.; Yang, Y.; Wang, W.; Song, Y.; Liu, D., Light‐Driven Conformational Switch of i‐Motif DNA. Angew. Chem. Int. Ed. 2007, 46, 2515-2517.
28. Saha, S.; Chakraborty, K.; Krishnan, Y., Tunable, colorimetric DNA-based pH sensors mediated by A-motif formation. Chem. Commun. 2012, 48, 2513-2515.
29. Chakraborty, S.; Sharma, S.; Maiti, P. K.; Krishnan, Y., The poly dA helix: a new structural motif for high performance DNA-based molecular switches. Nucleic Acids Res. 2009, 37, 2810-2817.
30. Idili, A.; Vallée-Bélisle, A.; Ricci, F., Programmable pH-triggered DNA nanoswitches. J. Am. Chem. Soc. 2014, 136, 5836-5839.
31. Chen, Y.; Lee, S. H.; Mao, C., A DNA nanomachine based on a duplex–triplex transition. Angew. Chem. Int. Ed. 2004, 43, 5335-5338.
32. Del Grosso, E.; Dallaire, A.-M.; Vallée-Bélisle, A.; Ricci, F., Enzyme-operated DNA-based nanodevices. Nano Lett. 2015, 15, 8407-8411.
33. Elbaz, J.; Wang, Z.-G.; Orbach, R.; Willner, I., pH-stimulated concurrent mechanical activation of two DNA “tweezers”. A “SET− RESET” logic gate system. Nano Lett. 2009, 9, 4510-4514.
34. Lakadamyali, M.; Rust, M. J.; Zhuang, X., Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 2006, 124, 997-1009.
35. Narayanaswamy, N.; Nair, R. R.; Suseela, Y.; Saini, D. K.; Govindaraju, T., A molecular beacon-based DNA switch for reversible pH sensing in vesicles and live cells. Chem. Commun. 2016, 52, 8741-8744.
36. Adler, A. J.; Grossman, L.; Fasman, G. D., Polyriboadenylic and polydeoxyriboadenylic acids. Optical rotatory studies of pH-dependent conformations and their relative stability. Biochemistry 1969, 8, 3846-3859.
37. Huang, Z.; Liu, B.; Liu, J., Parallel Polyadenine Duplex Formation at Low pH Facilitates DNA Conjugation onto Gold Nanoparticles. Langmuir 2016, 32, 11986-11992.
38. Lannes, L.; Halder, S.; Krishnan, Y.; Schwalbe, H., Tuning the pH Response of i‐Motif DNA Oligonucleotides. ChemBioChem 2015, 16, 1647-1656.
39. Kim, S.; Choi, J.; Majima, T., Self-assembly of polydeoxyadenylic acid studied at the single-molecule level. J. Phys. Chem. B. 2011, 115, 15399-15405.
40. Marathias, V. M.; Bolton, P. H., Determinants of DNA quadruplex structural type: sequence and potassium binding. Biochemistry 1999, 38, 4355-4364.
41. Hou, X.; Guo, W.; Xia, F.; Nie, F.-Q.; Dong, H.; Tian, Y.; Wen, L.; Wang, L.; Cao, L.; Yang, Y., A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J. Am. Chem. Soc. 2009, 131, 7800-7805.
42. Owczarzy, R.; You, Y.; Moreira, B. G.; Manthey, J. A.; Huang, L.; Behlke, M. A.; Walder, J. A., Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry 2004, 43, 3537-3554.
43. Gearheart, L. A.; Somoza, M. M.; Rivers, W. E.; Murphy, C. J.; Coleman, R. S.; Berg, M. A., Sodium-ion binding to DNA: detection by ultrafast time-resolved stokes-shift spectroscopy. J. Amer. Chem. Soc. 2003, 125, 11812-11813.
44. Ke, Q.; Zheng, Y.; Yang, F.; Zhang, H.; Yang, X., A fluorescence glucose sensor based on pH induced conformational switch of i-motif DNA. Talanta 2014, 129, 539-544.
45. Wang, M.; Zhang, G.; Zhang, D., Enzyme-driven i-motif DNA folding for logic operations and fluorescent biosensing. Chem. Commun. 2015, 51, 3812-3815.
46. Lu, L.-F.; Li, Y.-Y.; Zhang, M.; Shi, G., Visual fluorescence detection of H 2 O 2 and glucose based on “molecular beacon”-hosted Hoechst dyes. Analyst 2015, 140, 3642-3647.
47. Golub, E.; Freeman, R.; Niazov, A.; Willner, I., Hemin/G-quadruplexes as DNAzymes for the fluorescent detection of DNA, aptamer–thrombin complexes, and probing the activity of glucose oxidase. Analyst 2011, 136, 4397-4401.
48. Tiwari, P.; Dwivedi, S.; Singh, M. P.; Mishra, R.; Chandy, A., Basic and modern concepts on cholinergic receptor: A review. Asian Pac J Trop Dis. 2013, 3, 413-420.
49. Deshpande, L. S.; Phillips, K.; Huang, B.; DeLorenzo, R. J., Chronic behavioral and cognitive deficits in a rat survival model of paraoxon toxicity. Neurotoxicology 2014, 44, 352-357.
50. Deshpande, L. S.; Carter, D. S.; Phillips, K. F.; Blair, R. E.; DeLorenzo, R. J., Development of status epilepticus, sustained calcium elevations and neuronal injury in a rat survival model of lethal paraoxon intoxication. Neurotoxicology 2014, 44, 17-26.
51. Eyer, P., The role of oximes in the management of organophosphorus pesticide poisoning. Toxicological reviews 2003, 22, 165-190.
52. Hossain, S. Z.; Luckham, R. E.; Smith, A. M.; Lebert, J. M.; Davies, L. M.; Pelton, R. H.; Filipe, C. D.; Brennan, J. D., Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol− gel-derived bioinks. Anal. Chem. 2009, 81, 5474-5483.
53. Gao, X.; Tang, G.; Su, X., Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor. Biosens. Bioelectron. 2012, 36, 75-80.
54. Liang, M.; Fan, K.; Pan, Y.; Jiang, H.; Wang, F.; Yang, D.; Lu, D.; Feng, J.; Zhao, J.; Yang, L., Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal. Chem. 2012, 85, 308-312.
55. Zheng, Z.; Zhou, Y.; Li, X.; Liu, S.; Tang, Z., Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens. Bioelectron. 2011, 26, 3081-3085.
56. Ke, C.-Y.; Wu, Y.-T.; Tseng, W.-L., Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme–substrate system. Biosens. Bioelectron. 2015, 69, 46-53.
57. Traynor, J.; Mactier, R.; Geddes, C. C.; Fox, J. G., How to measure renal function in clinical practice. BMJ 2006, 333, 733.
58. Stewart, G., The emerging physiological roles of the SLC14A family of urea transporters. Br. J. Pharmacol. 2011, 164, 1780-1792.
59. Dong, J. X.; Gao, Z. F.; Zhang, Y.; Li, B. L.; Zhang, W.; Lei, J. L.; Li, N. B.; Luo, H. Q., The pH-switchable agglomeration and dispersion behavior of fluorescent Ag nanoclusters and its applications in urea and glucose biosensing. NPG Asia Mater. 2016, 8, e335.
60. Nair, L. V.; Philips, D. S.; Jayasree, R. S.; Ajayaghosh, A., A Near‐Infrared Fluorescent Nanosensor (AuC@ Urease) for the Selective Detection of Blood Urea. Small 2013, 9, 2673-2677.
61. Kazakova, L. I.; Shabarchina, L. I.; Sukhorukov, G. B., Co-encapsulation of enzyme and sensitive dye as a tool for fabrication of microcapsule based sensor for urea measuring. PCCP 2011, 13, 11110-11117.
62. Villalba, M. M.; McKeegan, K.; Vaughan, D.; Cardosi, M.; Davis, J., Bioelectroanalytical determination of phosphate: A review. J. Mol. Catal. B: Enzym. 2009, 59, 1-8.


1. Bu, Z.; Callaway, D., Proteins move! Protein dynamics and long-range allostery in cell signaling. Adv Protein Chem Struct Biol 2011, 83, 163-221.
2. Bohr, C., Die sauerstoff aufnahme des genuinen blutfarbstoffes und des aus dem blute dargestellten hämoglobins. Zentralblatt Physiol 1904, 17, 688-691.
3. Bohr, C.; Hasselbalch, K.; Krogh, A., Über einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Acta Physiol 1904, 16, 402-412.
4. Monod, J.; Wyman, J.; Changeux, J.-P., On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 1965, 12, 88-118.
5. Koshland Jr, D.; Nemethy, G.; Filmer, D., Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 1966, 5, 365-385.
6. Jaffe, E. K., Morpheeins–a new structural paradigm for allosteric regulation. Trends in biochemical sciences 2005, 30 (9), 490-497.
7. Wyman, J.; Gill, S., Binding and linkage: functional chemistry of biological molecules. Mill Valley. CA: University Science Books: 1990.
8. Abeliovich, H., An empirical extremum principle for the hill coefficient in ligand-protein interactions showing negative cooperativity. Biophys. J . 2005, 89, 76-79.
9. Ricci, F.; Vallée-Bélisle, A.; Plaxco, K. W., High-precision, in vitro validation of the sequestration mechanism for generating ultrasensitive dose-response curves in regulatory networks. PLoS Comput Biol 2011, 7, e1002171.
10. Hu, R.; Liu, T.; Zhang, X.-B.; Yang, Y.; Chen, T.; Wu, C.; Liu, Y.; Zhu, G.; Huan, S.; Fu, T., DLISA: A DNAzyme-based ELISA for protein enzyme-free immunoassay of multiple analytes. Anal. Chem. 2015, 87, 7746-7753.
11. Simon, A. J.; Vallée‐Bélisle, A.; Ricci, F.; Watkins, H. M.; Plaxco, K. W., Using the Population‐Shift Mechanism to Rationally Introduce “Hill‐type” Cooperativity into a Normally Non‐Cooperative Receptor. Angew. Chem. 2014, 126, 9625-9629.
12. Johnston, A. P.; Caruso, F., Stabilization of DNA multilayer films through oligonucleotide crosslinking. Small 2008, 4, 612-618.
13. Nieh, C.-C.; Tseng, W.-L., Thymine-based molecular beacon for sensing adenosine based on the inhibition of S-adenosylhomocysteine hydrolase activity. Biosens. Bioelectron. 2014, 61, 404-409.
14. Zhao, C.; Qu, K.; Song, Y.; Xu, C.; Ren, J.; Qu, X., A Reusable DNA Single‐Walled Carbon‐Nanotube‐Based Fluorescent Sensor for Highly Sensitive and Selective Detection of Ag+ and Cysteine in Aqueous Solutions. Chem.-Eur. J. 2010, 16, 8147-8154.
15. Persil, Ö.; Santai, C. T.; Jain, S. S.; Hud, N. V., Assembly of an antiparallel homo-adenine DNA duplex by small-molecule binding. J. Am. Chem. Soc. 2004, 126, 8644-8645.
16. Hao, C.; Xua, L.; Xing, C.; Kuang, H.; Wang, L.; Xu, C., Oligonucleotide-based fluorogenic sensor for simultaneous detection of heavy metal ions. Biosens. Bioelectron. 2012, 36, 174-178.
17. Wang, M.; Leung, K.-H.; Lin, S.; Chan, D. S.-H.; Leung, C.-H.; Ma, D.-L., A G-quadruplex-based, label-free, switch-on luminescent detection assay for Ag+ ions based on the exonuclease III-mediated digestion of C–Ag+–C DNA. J. Mater. Chem. B 2014, 2, 6467-6471.
18. Park, K. S.; Jung, C.; Park, H. G., “Illusionary” Polymerase Activity Triggered by Metal Ions: Use for Molecular Logic‐Gate Operations. Angew. Chem. Int. Ed. 2010, 49, 9757-9760.
19. Gong, H.; Li, X., Y-type, C-rich DNA probe for electrochemical detection of silver ion and cysteine. Analyst 2011, 136, 2242-2246.
20. Zhou, X.-H.; Kong, D.-M.; Shen, H.-X., G-quadruplex–hemin DNAzyme-amplified colorimetric detection of Ag+ ion. Anal. Chim. Acta 2010, 678 (1), 124-127.
21. Çetinkol, Ö. P.; Hud, N. V., Molecular recognition of poly (A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding. Nucleic Acids Res. 2008, 37 (2), 611-621.
22. Xing, F.; Song, G.; Ren, J.; Chaires, J. B.; Qu, X., Molecular recognition of nucleic acids: coralyne binds strongly to poly (A). FEBS Lett. 2005, 579, 5035-5039.
23. Giri, P.; Kumar, G. S., Binding of protoberberine alkaloid coralyne with double stranded poly (A): a biophysical study. Mol Biosyst. 2008, 4 (4), 341-348.
24. Fan, C.; Plaxco, K. W.; Heeger, A. J., Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci 2003, 100, 9134-9137.
25. Mao, Y.; Luo, C.; Ouyang, Q., Studies of temperature‐dependent electronic transduction on DNA hairpin loop sensor. Nucleic Acids Res. 2003, 31, e108-e108.
26. Immoos, C. E.; Lee, S. J.; Grinstaff, M. W., Conformationally gated electrochemical gene detection. ChemBioChem 2004, 5 (8), 1100-1103.
27. Tyagi, S.; Kramer, F. R., Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 1996, 14 (3), 303-308.
28. Lee, C.-Y.; Tseng, W.-L., Molecular Beacon-Based Fluorescent Assay for Specific Detection of Oversulfated Chondroitin Sulfate Contaminants in Heparin without Enzyme Treatment. Anal. Chem. 2015, 87, 5031-5035.
29. Kuo, C.-Y.; Tseng, W.-L., Adenosine-based molecular beacons as light-up probes for sensing heparin in plasma. Chem. Commun. 2013, 49, 4607-4609.
30. Lin, K.-C.; Kuo, C.-Y.; Nieh, C.-C.; Tseng, W.-L., Molecular beacon-based NAND logic gate for sensing triplex DNA binders. RSC ADV 2014, 4, 38389-38392.
31. Hirao, I.; Kawai, G.; Yoshizawa, S.; Nishimura, Y.; Ishido, Y.; Watanabe, K.; Miura, K.-i., Most compact hairpin-turn structure exerted by a short DNA fragment, d (GCGAAGC) in solution: an extraordinarily stable structure resistant to nucleases and heat. Nucleic Acids Res. 1994, 22, 576-582.
32. Varani, G., Exceptionally stable nucleic acid hairpins. Annu Rev Biophys Biomol Struct. 1995, 24, 379-404.
33. Antao, V. P.; Tinoco Jr, I., Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res. 1992, 20, 819-824.
34. Breslauer, K. J.; Frank, R.; Blöcker, H.; Marky, L. A., Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci 1986, 83, 3746-3750.
35. Cao, M.; Jiang, L.; Hu, F.; Zhang, Y.; Yang, W. C.; Liu, S. H.; Yin, J., A dansyl-based fluorescent probe for selectively detecting Cu 2+ and imaging in living cells. RSC ADV 2015, 5, 23666-23670.
36. Pollard, T. D., A guide to simple and informative binding assays. Mol Biol Cell 2010, 21, 4061-4067.
37. Greco, W. R.; Hakala, M. T., Evaluation of methods for estimating the dissociation constant of tight binding enzyme inhibitors. J. Biol. Chem. 1979, 254, 12104-12109.
38. Michaelis, L.; Menten, M., Die kinetik der invertinwirkung Biochem Z 49: 333–369. Find this article online 1913.
39. Briggs, G. E.; Haldane, J. B. S., A note on the kinetics of enzyme action. Biochem. J 1925, 19, 338.
40. Dowd, J. E.; Riggs, D. S., A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. J. Biol. Chem. 1965, 240, 863-869.
41. Li, J. J.; Geyer, R.; Tan, W., Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Res. 2000, 28, e52-e52.
42. Naumann, W.; Shokhirev, N. V.; Szabo, A., Exact asymptotic relaxation of pseudo-first-order reversible reactions. Phys. Rev. Lett. 1997, 79, 3074.
43. Schnell, S.; Mendoza, C., The condition for pseudo-first-order kinetics in enzymatic reactions is independent of the initial enzyme concentration. Biophys. Chem. 2004, 107, 165-174.
44. Zhou, J.; Sayre, D. A.; Zheng, Y.; Szmacinski, H.; Sintim, H. O., Unexpected complex formation between coralyne and cyclic diadenosine monophosphate providing a simple fluorescent turn-on assay to detect this bacterial second messenger. Anal. Chem. 2014, 86, 2412-2420.
45. Opoku-Temeng, C.; Sintim, H. O., Potent inhibition of cyclic diadenylate monophosphate cyclase by the antiparasitic drug, suramin. Chem. Commun. 2016, 52, 3754-3757.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code