Responsive image
博碩士論文 etd-0620117-101624 詳細資訊
Title page for etd-0620117-101624
論文名稱
Title
在具有腔內螺旋相位調制元件之簡併型雷射共振腔中産生高品質連續式渦流光束
Generation of high quality continuous wave optical vortices in a degenerate optical resonator with an intra-cavity spiral phase plate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-20
繳交日期
Date of Submission
2017-07-20
關鍵字
Keywords
偏斜的V型傳播軌跡、multi-pass transverse模態、相位鎖模、螺旋相位板、光學漩渦、軌道角動量
multi-pass transverse mode, skewed V-shaped trajectories, orbital angular momentum, spiral phase plate, phase-locked, optical vortex
統計
Statistics
本論文已被瀏覽 5774 次,被下載 49
The thesis/dissertation has been browsed 5774 times, has been downloaded 49 times.
中文摘要
光學漩渦(optical vortex)除了具有環型結構,光束內部光子還帶有軌道角動量(orbital angular momentum)。近年來在雷射應用與基礎物理研究中備受矚目,尤其在顯微鏡、顆粒處理、天文學、宇宙學與Sub-Peta赫茲的光通訊上具有高度的應用價值,儘管現今有許多建構光學漩渦的方式,例如螺旋相位板、全相片或是q-plate來產生光學漩渦,但至今仍沒有一個有效率的光束轉換方法。
本研究提出2-fold簡併型渦流雷射,架構為接近半球型共振腔(near semi-spherical resonator)內放入螺旋相位板(spiral phase plate),透過雷射晶體內光束之間的互相耦合,光束在共振腔內遵循偏斜的V型傳播軌跡以及multi-pass transverse模態(MTP mode)經由相位鎖模(phase-locked)形成光學漩渦。在雷射晶體中光束遵循偏斜的V型傳播軌跡,光束相互重疊並有強烈的耦合作用發生,建立了光束之間的同調性與同相性,使渦流雷射得以輸出能量。以Nd:YAG作為渦流雷射的增益介質,其泵浦臨界功率為1.52W以及特性曲線斜率為0.19,而輸出功率的變動率為2.2%以及輸出光束角度穩定度小於2.6μrads。本研究不僅提出有效率且可靠的方式來產生高品質連續式的光學漩渦,還開發出可供研究非線性耦合動力學的平台。
Abstract
Optical vortex (OV) is more than a beam of donut-shaped intensity profile. It carries well-defined orbital angular momentum (OAM) in the photons within which distinguishes OV beams from vector beams of radail or azimuthal polarizations. The unique property of OV beam have attracted growing attentions due to the wide range of promising applications including microscopy, particle manipulation, astronomy and cosmology and sub-Peta hertz bit-rate optical communications. Although a number of techniques are devised to generate OV with helical wavefront from gaussian beams by exploiting external resonator conversion element such as spiral phase plate (SPP), holograms, anisotropic media (q-plate), not one of these approaches achieve a satisfactory conversion efficiency and beam quality.
This work propose to generate non-gaussian OV beam using a degenerate cavity with an intra-cavity SPP. Using a near semi-spherical resonator of 2-fold degeneracy perturbed by SPP, any one of the rays inside retraces itself twice to complete a closed orbital following a skewed V-shaped trajectories and it is a multi-pass transverse mode (MTP mode). To have stable radiation field oscillating in vortex resonator, it requires the ray trajectories to retrace a closed orbital. The closed orbitals can be established by composite beam interactions in the laser crystal including the nonlinear interactions and linear coupling by scattering and diffractions. The OV beam created in the proposed vortex resonator is the superposition of phase-locked MTP modes instead of LG modes. In the laser crystal, laser beams follow the closed skewed v-shaped orbitals overlap and are strongly coupled. The mutual coherence among the laser beams is established and the laser beams are in-phase to achieve the minimum system energy. The proposed idea is demonstrated in a solid-state laser system using Nd:YAG as a gain media. The laser operated with a threshold pump power of 1.52W and a slope efficiency of 0.19W per Watt pumped. The OV beam generated by this resonator was stable within power fluctuation of 2.2% and pointing deviation of 2.6μrads. This work not merely provides an efficient and robust approach that generates high quality OV beam but also suggests a platform to study the subtle dynamics of nonlinear coupled system.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xi
第一章、緒論 1
1-1何謂光學漩渦 1
1-2文獻回顧 4
1-2-1 Hermite-Gauss轉換至Laguerre-Gaussian 4
1-2-2特製光纖耦合泵浦光源重製光場 6
1-2-3空間光調變器置入共振腔調變光場 9
1-2-4 q-plate產生Poincaré sphere模態 11
1-2-5 螺旋相位元件產生光學漩渦 13
1-2-6調變元件放置於腔外與腔內之重點整理與比較 16
1-3研究動機 17
1-4論文架構 19
第二章、簡易簡併型共振腔 20
2-1光線追跡法分析共振腔 20
2-2 Laguerre-Gaussian光束分析光場 23
2-3結果與討論 26
2-3-1實驗架構 26
2-3-2相位干涉特性分析 27
2-3-3光場分析 28
第三章、2-fold簡併型渦流雷射 30
3-1共振腔內光束傳播模型 30
3-2渦流雷射介紹 34
3-2-1共振腔的設計 34
3-2-2泵浦光源 35
3-2-3準直聚焦透鏡組 37
3-2-4雷射共振腔 37
3-2-5螺旋相位板 38
3-2-6晶體特性 40
3-3結果與討論 44
3-3-1驗證渦流共振腔光束傳播軌跡 44
3-3-2極化特性與相位干涉分析 47
3-3-3光束發散特性 49
3-3-4渦流雷射輸出結果 50
3-3-5穩定度測試 51
第四章、結論與為未來展望 53
4-1結論 53
4-2未來展望 54
參考文獻 55
參考文獻 References
[1] J. Nye and M. Berry, "Dislocations in wave trains," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1974, vol. 336, no. 1605, pp. 165-190: The Royal Society.
[2] C. Tamm and C. Weiss, "Bistability and optical switching of spatial patterns in a laser," JOSA B, vol. 7, no. 6, pp. 1034-1038, 1990.
[3] V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, "Laser beams with screw dislocations in their wavefronts," Jetp Lett, vol. 52, no. 8, pp. 429-431, 1990.
[4] L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review A, vol. 45, no. 11, p. 8185, 1992.
[5] Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Advances in Optics and Photonics, vol. 1, no. 1, pp. 1-57, 2009.
[6] M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, "Astigmatic laser mode converters and transfer of orbital angular momentum," Optics Communications, vol. 96, no. 1-3, pp. 123-132, 1993.
[7] J. Vickers, M. Burch, R. Vyas, and S. Singh, "Phase and interference properties of optical vortex beams," JOSA A, vol. 25, no. 3, pp. 823-827, 2008.
[8] J. Kim and W. Clarkson, "Selective generation of Laguerre–Gaussian (LG 0n) mode output in a diode-laser pumped Nd: YAG laser," Optics Communications, vol. 296, pp. 109-112, 2013.
[9] D. Lin, J. Daniel, and W. Clarkson, "Controlling the handedness of directly excited Laguerre–Gaussian modes in a solid-state laser," Optics letters, vol. 39, no. 13, pp. 3903-3906, 2014.
[10] D. Kim and J. Kim, "Direct generation of an optical vortex beam in a single-frequency Nd: YVO 4 laser," Optics letters, vol. 40, no. 3, pp. 399-402, 2015.
[11] S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, "A digital laser for on-demand laser modes," Nature communications, vol. 4, 2013.
[12] L. Marrucci, C. Manzo, and D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Physical review letters, vol. 96, no. 16, p. 163905, 2006.
[13] D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, "Controlled generation of higher-order Poincaré sphere beams from a laser," Nature Photonics, vol. 10, no. 5, pp. 327-332, 2016.
[14] R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, "Laser mode discrimination with intra-cavity spiral phase elements," Optics communications, vol. 169, no. 1, pp. 115-121, 1999.
[15] R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, "Efficient formation of pure helical laser beams," Optics communications, vol. 182, no. 1, pp. 205-208, 2000.
[16] G. Foo, D. M. Palacios, and G. A. Swartzlander, "Optical vortex coronagraph," Optics letters, vol. 30, no. 24, pp. 3308-3310, 2005.
[17] H. C. Ishikawa-Ankerhold, R. Ankerhold, and G. P. Drummen, "Advanced fluorescence microscopy techniques—Frap, Flip, Flap, Fret and flim," Molecules, vol. 17, no. 4, pp. 4047-4132, 2012.
[18] A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Optics letters, vol. 11, no. 5, pp. 288-290, 1986.
[19] P. Boffi, P. Martelli, A. Gatto, and M. Martinelli, "Mode-division multiplexing in fibre-optic communications based on orbital angular momentum," Journal of Optics, vol. 15, no. 7, p. 075403, 2013.
[20] F. Wright, "Wavefront dislocations and their analysis using catastrophe theory," in Structural Stability in Physics: Springer, 1979, pp. 141-156.
[21] M. Malik, M. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. Lavery, M. J. Padgett, and R. W. Boyd, "Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding," Optics Express, vol. 20, no. 12, pp. 13195-13200, 2012.
[22] I. Ramsay and J. Degnan, "A ray analysis of optical resonators formed by two spherical mirrors," Applied optics, vol. 9, no. 2, pp. 385-398, 1970.
[23] M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions (; New York," NY: Dover Publications, 1972.
[24] M. Traı̈che and A. Kellou, "Calculation of the resonant eigenfield in the basis of Laguerre–Gaussian modes for rotationally symmetric plano-concave stable resonators," Optics communications, vol. 208, no. 4, pp. 391-399, 2002.
[25] M. Eggleston, T. Godat, E. Munro, M. A. Alonso, H. Shi, and M. Bhattacharya, "Ray transfer matrix for a spiral phase plate," JOSA A, vol. 30, no. 12, pp. 2526-2530, 2013.
[26] M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, "Observing geometric frustration with thousands of coupled lasers," Physical review letters, vol. 110, no. 18, p. 184102, 2013.
[27] M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Optics Communications, vol. 112, no. 5-6, pp. 321-327, 1994.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code