Responsive image
博碩士論文 etd-0620117-162932 詳細資訊
Title page for etd-0620117-162932
論文名稱
Title
以表面增強拉曼散射光譜和螢光光譜來分析馬兜鈴酸I及實際應用於尿液檢體的檢測
Analysis of aristolochic acid I and its application in urine by surface-enhanced Raman scattering and photoluminescence spectra
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-05
繳交日期
Date of Submission
2017-07-20
關鍵字
Keywords
銀奈米粒子、馬兜鈴酸I、表面增強拉曼散射光譜、馬兜鈴內醯胺Ia、環氧樹脂奈米點、螢光光譜
Silver nanoparticles, Aristolochic acid I, Surface-enhanced Raman scattering spectra, Aristololactam Ia, Photoluminescence spectra, Epoxy nanodots
統計
Statistics
本論文已被瀏覽 5669 次,被下載 0
The thesis/dissertation has been browsed 5669 times, has been downloaded 0 times.
中文摘要
近年來,含有馬兜鈴酸 (AA)中草藥對健康影響的爭議不斷,報導有多起腎纖維化和腎衰竭的案例皆與病人服用中藥有關。本研究提出新穎的檢測馬兜鈴酸I (AAI)的生化檢測方法,使用具有表面增強拉曼散射 (SERS)的銀奈米粒子(Ag NPs)和具有螢光的環氧樹脂奈米點 (Epoxy NDs),分別作為SERS和螢光 (PL)光譜檢測AAI的基材。
在SERS的實驗中,會形成兩種類型的複合物:一為AAI結合於3-氨基丙基雜氮矽三環 (APS)包覆的Ag NPs。銀離子還原成粒徑為5.48 ± 0.14 nm的球型Ag NPs,形成APS層後產生更大且粒徑為4.78 ± 0.09 μm的聚集體,最後AAI包覆在APS上而形成AAI/APS@AgNPs。在此,APS不只作為還原劑,還作為包覆劑;另一為AAI直接和Ag NPs結合,再使用APS包覆在外層而形成APS/AAI@AgNPs。透過X-ray光電子能譜 (XPS)和傅立葉轉換紅外光譜 (FTIR)證實Ag NPs的合成機制,還透過XPS和能量分散光譜 (EDS)證實Ag NPs的還原,且透過SERS來探討Ag NPs還原的最佳條件,並測得高達10⁵數量級的增強因子 (EF),且其SERS的偵測極限 (Limit of detection;LOD)為10 μM。
而在PL的實驗中,修飾已硝基還原化後AAI在Epoxy NDs的表面上是進行胺解反應,並有助於提高螢光強度。透過XPS和FTIR證實Epoxy NDs和AAI的修飾位置,還透過PL來探討Epoxy NDs和AAI反應的最佳條件,且其PL的LOD為2 μM。
AAI在體內會被代謝成馬兜鈴內醯胺Ia (ALIa),本研究用於檢測ALIa的兩種生化檢測方法,不只易於製備,成本低廉,還不用繁瑣的樣品前處理等,可能為臨床研究中的現有檢測ALIa的檢測方法中,提供卓越的替代方案。
Abstract
Controversy over the health effects of Chinese herbal medicines containing aristolochic acid remains unresolved. Multiple cases of renal fibrosis and renal failure have been reported in patients taking Chinese medicines. In this study, a novel biochemical method for the detection of Aristolochic acid I (AAI) is proposed. We used silver nanoparticles (Ag NPs) for surface enhanced Raman scattering (SERS) and fluorescent Epoxy nanodots (Epoxy NDs), as substrates for detection of AAI by SERS and Photoluminescence (PL) spectra respectively.
For SERS experiments, two types of complexes were formed. In the first, AAI was bound to 3-Aminopropylsilatrane (APS) coated Ag NPs. Silver ions were reduced to form spherical (5.48 ± 0.14 nm) Ag NPs, then an APS layer was formed, creating a large aggregate (4.78 ± 0.09 μm) and finally AAI was coated on the APS to form AAI/APS@Ag NPs. Here, APS was not only used as a reducing agent, but also a coating agent. In the second method, AAI was directly bound to the Ag NPs and then an outer coating of APS was applied to form APS/AAI@Ag NPs. The proposed mechanism for Ag NPs synthesis was confirmed by X-ray photoelectron spectra (XPS) and Fourier transform infrared (FTIR). The reduction of Ag NPs was confirmed by XPS and Energy-dispersive X-ray spectra (EDS). We investigated the best reducting conditions of Ag NPs by SERS, and measured the enhancement factor of up to 10⁵. The limit of detection (LOD) of SERS is 10 μM.
For PL experiment, the modified nitroreducted AAI underwent aminolysis reaction on the surface of Epoxy NDs, which served to enhance the fluorescence intensity. The modification of Epoxy NDs was confirmed by XPS and FTIR. The LOD of PL is 2 μM.
In the body, AAI is metabolized to form Aristololactam Ia (ALIa). The two biochemical methods demonstrated in this study for detecting ALIa are easily prepared, economical, and don’t require complicated pretreatment of the samples. These may provide a superior alternative to existing detection methods for ALIa in clinical studies.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iv
圖次 viii
表次 xii
第壹章 緒論 1
1-1 馬兜鈴酸 (Aristolochic acid) 1
1-2 研究動機 5
第貳章 儀器原理 6
2-1 拉曼光譜儀 (Raman spectrometer) 6
2-1-1 簡介 6
2-1-2 參數設定及樣品製備 10
2-2 光致發光光譜儀 (Photoluminescence spectrometer) 11
2-2-1 簡介 11
2-2-2 參數設定及樣品製備 13
2-3 X-ray光電子能譜儀 (X-ray photoelectron spectrometer) 14
2-3-1 簡介 14
2-3-2 參數設定及樣品製備 15
2-4 傅立葉轉換紅外光譜儀 (Fourier transform infared spectrometer) 16
2-4-1 簡介 16
2-4-2 參數設定及樣品製備 17
2-5 紫外光/可見光譜儀 (Ultraviolet-visble spectrometer) 18
2-5-1 簡介 18
2-5-2 參數設定及樣品製備 19
2-6 掃描式電子顯微鏡 (Scanning electron microscope) 20
2-6-1 簡介 20
2-6-2 參數設定及樣品製備 21
2-7 穿透式電子顯微鏡 (Transmission electron microscope) 22
2-7-1 簡介 22
2-7-2 參數設定及樣品製備 23
2-8 能量分散光譜儀 (Energy dispersive spectrometer) 24
2-8-1 簡介 24
2-8-2 參數設定及樣品製備 25
第叁章 以表面增強拉曼散射 (SERS)光譜分析馬兜鈴酸I的研究 26
3-1 前言 26
3-2 文獻回顧─表面增強拉曼散射 (SERS)機制 28
3-3 實驗部分 32
3-3-1 實驗藥品 32
3-3-2 實驗流程 32
3-4 實驗結果 36
3-4-1 鑑定銀奈米粒子 (Ag NPs)的還原 36
3-4-2 鑑定APS/AAI@Ag NPs的形成 39
3-4-3 推測APS/AAI@Ag NPs可能的合成位置 44
3-4-4 APS/AAI@Ag NPs的合成機制 51
3-4-5 比較APS/AAI@Ag NPs和AAI/APS@Ag NPs的差異 52
3-4-6 探討Ag NPs還原的最佳條件 56
3-4-7 探討3-氨基丙基雜氮矽三環 (APS)包覆量的關係 59
3-4-8 以表面增強拉曼散射 (SERS)光譜分析AAI的偵測極限 61
3-4-9 此SERS光譜檢測AAI研究和其他文獻比較的優勢 63
3-4-10 結論 65
第肆章 以螢光 (PL)光譜分析馬兜鈴酸I的研究 66
4-1 前言 66
4-2 文獻回顧─光致發光 (PL)機制 68
4-3 實驗部分 71
4-3-1 實驗藥品 71
4-3-2 實驗流程 71
4-4 實驗結果 73
4-4-1 探討所合成的環氧樹脂奈米點 (Epoxy NDs)的特徵分析 73
4-4-2 推測馬兜鈴酸I (AAI)修飾在Epoxy NDs的可能位置 75
4-4-4 AAI修飾在Epoxy NDs上的機制 79
4-4-5 選定Epoxy NDs的激發波長 81
4-4-6 探討Epoxy NDs和AAI反應的最佳條件 82
4-4-7 以螢光 (PL)光譜分析AAI的偵測極限 83
4-4-8 此PL光譜檢測AAI研究和其他文獻比較的優勢 85
4-4-9 結論 88
第伍章 實際應用於尿液檢體的檢測 89
5-1 前言 89
5-2 文獻回顧─馬兜鈴酸 (AA)的致癌原因 91
5-3 實驗部分 93
5-3-1 實驗藥品 93
5-3-2 實驗流程 94
5-4 實驗結果 98
5-4-1 探討馬兜鈴酸I (AAI)在正常尿液中的檢測情形 98
5-4-2 以表面增強拉曼散射 (SERS)檢測尿液檢體 99
5-4-3 結論 100
第陸章 總結 101
第柒章 參考文獻 102
參考文獻 References
1. Mullaicharam, A., Counterfeit herbal medicine. International Journal of Nutrition, Pharmacology, Neurological Diseases 2011, 1 (2), 97.
2. Mengs, U.; Lang, W.; Poch, J.-A., The carcinogenic action of aristolochic acid in rats. Archives of Toxicology 1982, 51 (2), 107-119.
3. Wen, Y.-J.; Su, T.; Tang, J.-W.; Zhang, C.-Y.; Wang, X.; Cai, S.-Q.; Li, X.-M., Cytotoxicity of phenanthrenes extracted from Aristolochia contorta in human proximal tubular epithelial cell line. Nephron Experimental Nephrology 2006, 103 (3), e95-e102.
4. Gold, L. S.; Zeiger, E., Handbook of carcinogenic potency and genotoxicity databases. CRC Press: 1996.
5. Tankeu, S.; Vermaak, I.; Chen, W.; Sandasi, M.; Viljoen, A., Differentiation between two “fang ji” herbal medicines, Stephania tetrandra and the nephrotoxic Aristolochia fangchi, using hyperspectral imaging. Phytochemistry 2016, 122, 213-222.
6. Snyman, T.; Stewart, M. J.; Grove, A.; Steenkamp, V., Adulteration of South African traditional herbal remedies. Therapeutic drug monitoring 2005, 27 (1), 86-89.
7. 田峰; 王琳, 龙胆泻肝汤. 中国医药科技出版社: 2009.
8. Gu, J.; Zhang, P.; Zhang, F.; Shen, H.; Yang, B.; Liang, X.; Chu, X., Determination of aristolochic acids in rat serum by high performance liquid chromatography-Q-TOF tandem mass spectrometry. Analytical Methods 2013, 5 (3), 718-721.
9. Chen, M.; Gong, L.; Qi, X.; Xing, G.; Luan, Y.; Wu, Y.; Xiao, Y.; Yao, J.; Li, Y.; Xue, X., Inhibition of renal NQO1 activity by dicoumarol suppresses nitroreduction of aristolochic acid I and attenuates its nephrotoxicity. Toxicological Sciences 2011, 122 (2), 288-296.
10. Smekal, A., Zur quantentheorie der dispersion. Naturwissenschaften 1923, 11 (43), 873-875.
11. Raman, C.; Krishnan, K., hν o hν. Nature 1928, 121, 501.
12. Colthup, N., Introduction to infrared and Raman spectroscopy. Elsevier: 2012.
13. Tipping, W.; Lee, M.; Serrels, A.; Brunton, V.; Hulme, A., Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chemical Society Reviews 2016, 45 (8), 2075-2089.
14. Moura, C. C.; Tare, R. S.; Oreffo, R. O.; Mahajan, S., Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. Journal of The Royal Society Interface 2016, 13 (118), 20160182.
15. Andrews, D. L., Molecular Photophysics and Spectroscopy. Morgan & Claypool Publishers: 2014.
16. McCreery, R. L., Magnitude of Raman scattering. Raman spectroscopy for chemical analysis 2000, 15-33.
17. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. Springer US: 2013.
18. Harris, D. C., Quantitative Chemical Analysis (Loose-Leaf). W. H. Freeman: 2010.
19. Hsiao-Chi, L.; Yu-Chain, P.; Meng-Yeh, L.; Sheng-Lung, C.; Jen-Iu, L.; Bing-Ming, C., Photoluminescence of a CVD Diamond Excited with VUV Light from a Synchrotron. Optics and Photonics Journal 2013, 2013.
20. Hollander, J. M.; Jolly, W. L., X-ray photoelectron spectroscopy. Accounts of chemical research 1970, 3 (6), 193-200.
21. Watts, J. F., X-ray photoelectron spectroscopy. Vacuum 1994, 45 (6-7), 653-671.
22. O'Connor, J.; Sexton, B. A.; Smart, R. S. C., Surface Analysis Methods in Materials Science. Springer: 2003.
23. Andrade, J. D., X-ray photoelectron spectroscopy (XPS). In Surface and interfacial aspects of biomedical polymers, Springer: 1985; pp 105-195.
24. Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A., Introduction to spectroscopy. Cengage Learning: 2008.
25. White, R., Chromatography/Fourier transform infrared spectroscopy and its applications. CRC Press: 1989; Vol. 10.
26. Yang, L.; Luo, S.; Li, Y.; Xiao, Y.; Kang, Q.; Cai, Q., High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 pn heterojunction network catalyst. Environmental science & technology 2010, 44 (19), 7641-7646.
27. Pan, W.; Zhang, G.; Zheng, T.; Wang, P., Degradation of p-nitrophenol using CuO/Al 2 O 3 as a Fenton-like catalyst under microwave irradiation. RSC Advances 2015, 5 (34), 27043-27051.
28. Beer, A., Determination of the absorption of red light in colored liquids. Ann. Phys. Chem 1852, 86, 78-88.
29. Vernon-Parry, K., Scanning electron microscopy: an introduction. III-Vs Review 2000, 13 (4), 40-44.
30. Todokoro, H.; Otaka, T., Scanning electron microscope. Google Patents: 1995.
31. Goldstein, J.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Romig Jr, A. D.; Lyman, C. E.; Fiori, C.; Lifshin, E., Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer Science & Business Media: 2012.
32. Egerton, R. F., Physical principles of electron microscopy. Springer: 2005.
33. Williams, D. B.; Carter, C. B., The Transmission Electron Microscope. In Transmission Electron Microscopy: A Textbook for Materials Science, Springer US: Boston, MA, 2009; pp 3-22.
34. Reimer, L., Transmission electron microscopy: physics of image formation and microanalysis. Springer: 2013; Vol. 36.
35. Shindo, D.; Oikawa, T., Energy Dispersive X-ray Spectroscopy. In Analytical Electron Microscopy for Materials Science, Springer Japan: Tokyo, 2002; pp 81-102.
36. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166.
37. Kneipp, K.; Kneipp, H.; Deinum, G.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Single-molecule detection of a cyanine dye in silver colloidal solution using near-infrared surface-enhanced Raman scattering. Applied spectroscopy 1998, 52 (2), 175-178.
38. Lv, Y.; Liu, H.; Wang, Z.; Liu, S.; Hao, L.; Sang, Y.; Liu, D.; Wang, J.; Boughton, R., Silver nanoparticle-decorated porous ceramic composite for water treatment. Journal of Membrane Science 2009, 331 (1), 50-56.
39. Hah, H. J.; Koo, S. M.; Lee, S. H., Preparation of silver nanoparticles through alcohol reduction with organoalkoxysilanes. Journal of sol-gel science and technology 2003, 26 (1-3), 467-471.
40. Huang, K.-W.; Hsieh, C.-W.; Kan, H.-C.; Hsieh, M.-L.; Hsieh, S.; Chau, L.-K.; Cheng, T.-E.; Lin, W.-T., Improved performance of aminopropylsilatrane over aminopropyltriethoxysilane as a linker for nanoparticle-based plasmon resonance sensors. Sensors and Actuators B: Chemical 2012, 163 (1), 207-215.
41. Morrill, A. R.; Duong, D. T.; Lee, S. J.; Moskovits, M., Imaging 3-aminopropyltriethoxysilane self-assembled monolayers on nanostructured titania and tin (IV) oxide nanowires using colloidal silver nanoparticles. Chemical Physics Letters 2009, 473 (1), 116-119.
42. Chen, W.-H.; Tseng, Y.-T.; Hsieh, S.; Liu, W.-C.; Hsieh, C.-W.; Wu, C.-W.; Huang, C.-H.; Lin, H.-Y.; Chen, C.-W.; Lin, P.-Y., Silanization of solid surfaces via mercaptopropylsilatrane: a new approach of constructing gold colloid monolayers. RSC Advances 2014, 4 (87), 46527-46535.
43. Hsieh, C.-W.; Lin, P.-Y.; Hsieh, S., Improved surface-enhanced Raman scattering of insulin fibril templated colloidal gold nanoparticles on silicon. Journal of Nanophotonics 2012, 6 (1), 063501-1-063501-6.
44. Alarcon, E. I.; Griffith, M.; Udekwu, K. I., Silver Nanoparticle Applications. Springer: 2015.
45. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20.
46. Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society 1977, 99 (15), 5215-5217.
47. Siddhanta, S.; Narayana, C., Surface enhanced Raman spectroscopy of proteins: Implications for drug designing. Nanomaterials and Nanotechnology 2012, 2, 1.
48. Le Ru, E.; Etchegoin, P., Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. Elsevier: 2008.
49. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter 2002, 14 (18), R597.
50. Maher, R. C., SERS hot spots. In Raman spectroscopy for nanomaterials characterization, Springer: 2012; pp 215-260.
51. Brolo, A. G.; Irish, D. E.; Smith, B. D., Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions. Journal of molecular structure 1997, 405 (1), 29-44.
52. Doering, W. E.; Nie, S., Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. The Journal of Physical Chemistry B 2002, 106 (2), 311-317.
53. Joshi, B. D.; Srivastava, A.; Gupta, V.; Tandon, P.; Jain, S., Spectroscopic and quantum chemical study of an alkaloid aristolochic acid I. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013, 116, 258-269.
54. Chi, Y.; Yuan, Q.; Li, Y.; Tu, J.; Zhao, L.; Li, N.; Li, X., Synthesis of Fe 3 O 4@ SiO 2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. Journal of colloid and interface science 2012, 383 (1), 96-102.
55. Cazacu, M.; Shova, S.; Turta, C.; Simionescu, B. C., Synthesis and structural characterization of 1-(3-aminopropyl) silatrane and some new derivatives. Polyhedron 2012, 33 (1), 119-126.
56. Keskin, S.; Efeoğlu, E.; Keçeci, K.; Çulha, M., Label-free detection of proteins in ternary mixtures using surface-enhanced Raman scattering and protein melting profiles. Journal of biomedical optics 2013, 18 (3), 037007-037007.
57. Le Ru, E.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C 2007, 111 (37), 13794-13803.
58. Smith, K.; Black, K., Characterization of the treated surfaces of silicon alloyed pyrolytic carbon and SiC. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1984, 2 (2), 744-747.
59. Yuan, W.; Gu, Y.; Li, L., Green synthesis of graphene/Ag nanocomposites. Applied Surface Science 2012, 261, 753-758.
60. Bondarenka, V.; Grebinskij, S.; Kaciulis, S.; Mattogno, G.; Mickevicius, S.; Tvardauskas, H.; Volkov, V.; Zakharova, G., XPS study of vanadium–yttrium hydrates. Journal of Electron Spectroscopy and Related Phenomena 2001, 120 (1), 131-135.
61. Lee, T. H.; Rabalais, J. W., X-ray photoelectron spectra and electronic structure of some diamine compounds. Journal of Electron Spectroscopy and Related Phenomena 1977, 11 (1), 123-127.
62. Niu, H.; Wang, S.; Zeng, T.; Wang, Y.; Zhang, X.; Meng, Z.; Cai, Y., Preparation and characterization of layer-by-layer assembly of thiols/Ag nanoparticles/polydopamine on PET bottles for the enrichment of organic pollutants from water samples. Journal of Materials Chemistry 2012, 22 (31), 15644-15653.
63. Yang, J.; Stuart, M. A. C.; Kamperman, M., Jack of all trades: versatile catechol crosslinking mechanisms. Chemical Society Reviews 2014, 43 (24), 8271-8298.
64. Hartung, J.; Weber, G.; Beyer, L.; Szargan, R.; Kreutzmann, J., Schwermetallchelate von α‐Cyano‐β‐amino‐dithioacrylsäureestern. Zeitschrift für anorganische und allgemeine Chemie 1986, 543 (12), 186-191.
65. Kang, E.; Neoh, K.; Zhang, X.; Tan, K.; Liaw, D., Surface modification of electroactive polymer films by ozone treatment. Surface and interface analysis 1996, 24 (1), 51-58.
66. Lin, P.-Y.; Hsieh, S., One-step self-assembled epoxide-containing nanodots as an enzyme-immobilized platform for biosensing. Sensors and Actuators B: Chemical 2017, 240, 674-680.
67. Bartle, K.; Perry, D.; Wallace, S., The functionality of nitrogen in coal and derived liquids: an XPS study. Fuel Processing Technology 1987, 15, 351-361.
68. Chan, W.; Lee, K.-C.; Liu, N.; Cai, Z., A sensitivity enhanced high-performance liquid chromatography fluorescence method for the detection of nephrotoxic and carcinogenic aristolochic acid in herbal medicines. Journal of Chromatography A 2007, 1164 (1), 113-119.
69. Macosko, C. W.; Jeon, H. K.; Hoye, T. R., Reactions at polymer–polymer interfaces for blend compatibilization. Progress in Polymer Science 2005, 30 (8), 939-947.
70. Gómez-Cámer, J. L.; Morales, J.; Sánchez, L., Anchoring Si nanoparticles to carbon nanofibers: an efficient procedure for improving Si performance in Li batteries. Journal of Materials Chemistry 2011, 21 (3), 811-818.
71. Parrill, T.; Chung, Y., Surface analysis of cubic silicon carbide (001). Surface science 1991, 243 (1-3), 96-112.
72. Broschard, T. H.; Wiessler, M.; von der Lieth, C.-W.; Schmeiser, H. H., Translesional synthesis on DNA templates containing site-specifically placed deoxyadenosine and deoxyguanosine adducts formed by the plant carcinogen aristolochic acid. Carcinogenesis 1994, 15 (10), 2331-2340.
73. Kathuria, P.; Sharma, P.; Wetmore, S. D., Adenine versus guanine DNA adducts of aristolochic acids: role of the carcinogen–purine linkage in the differential global genomic repair propensity. Nucleic acids research 2015, gkv701.
74. Zhang, X.; Du, X., Carbon Nanodot-Decorated Ag@ SiO2 Nanoparticles for Fluorescence and Surface-Enhanced Raman Scattering Immunoassays. ACS applied materials & interfaces 2015, 8 (1), 1033-1040.
75. Chen, Y.; Bai, X.; Su, L.; Du, Z.; Shen, A.; Materny, A.; Hu, J., Combined labelled and label-free sers probes for triplex three-dimensional cellular imaging. Scientific reports 2016, 6.
76. Ong, E.-S.; Woo, S.-O.; Yong, Y.-L., Pressurized liquid extraction of berberine and aristolochic acids in medicinal plants. Journal of Chromatography A 2000, 904 (1), 57-64.
77. Ong, E. S.; Woo, S. O., Determination of aristolochic acids in medicinal plants (Chinese) prepared medicine using capillary zone electrophoresis. Electrophoresis 2001, 22 (11), 2236-2241.
78. Chan, S.-A.; Chen, M.-J.; Liu, T.-Y.; Fuh, M.-R.; Deng, J.-F.; Wu, M.-L.; Hsieh, S.-J., Determination of aristolochic acids in medicinal plant and herbal product by liquid chromatography–electrospray–ion trap mass spectrometry. Talanta 2003, 60 (4), 679-685.
79. Zhou, X.; Zheng, C.; Sun, J.; You, T., Analysis of nephroloxic and carcinogenic aristolochic acids in Aristolochia plants by capillary electrophoresis with electrochemical detection at a carbon fiber microdisk electrode. Journal of Chromatography A 2006, 1109 (2), 152-159.
80. Wang, Y.; Chan, W., Determination of aristolochic acids by high-performance liquid chromatography with fluorescence detection. Journal of agricultural and food chemistry 2014, 62 (25), 5859-5864.
81. Leung, E. M.; Chan, W., Noninvasive measurement of aristolochic acid-DNA adducts in urine samples from aristolochic acid-treated rats by liquid chromatography coupled tandem mass spectrometry: Evidence for DNA repair by nucleotide-excision repair mechanisms. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2014, 766, 1-6.
82. Li, W.; Hu, Q.; Chan, W., Uptake and Accumulation of Nephrotoxic and Carcinogenic Aristolochic Acids in Food Crops Grown in Aristolochia clematitis-Contaminated Soil and Water. Journal of agricultural and food chemistry 2015, 64 (1), 107-112.
83. Chan, W.; Pavlović, N. M.; Li, W.; Chan, C.-K.; Liu, J.; Deng, K.; Wang, Y.; Milosavljević, B.; Kostić, E. N., Quantitation of Aristolochic Acids in Corn, Wheat Grain, and Soil Samples Collected in Serbia: Identifying a Novel Exposure Pathway in the Etiology of Balkan Endemic Nephropathy. Journal of agricultural and food chemistry 2016, 64 (29), 5928-5934.
84. Hu, Y.; Wu, H.-L.; Yin, X.-L.; Gu, H.-W.; Xiao, R.; Wang, L.; Fang, H.; Yu, R.-Q., Interference-free spectrofluorometric quantification of aristolochic acid I and aristololactam I in five Chinese herbal medicines using chemical derivatization enhancement and second-order calibration methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 175, 229-238.
85. Kirkland, J.; Yau, W.; Stoklosa, H.; Dilks Jr, C., Sampling and extra-column effects in high-performance liquid chromatography; influence of peak skew on plate count calculations. Journal of chromatographic science 1977, 15 (8), 303-316.
86. Michalet, X.; Pinaud, F.; Bentolila, L.; Tsay, J.; Doose, S.; Li, J.; Sundaresan, G.; Wu, A.; Gambhir, S.; Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics. science 2005, 307 (5709), 538-544.
87. Goldman, E. R.; Medintz, I. L.; Whitley, J. L.; Hayhurst, A.; Clapp, A. R.; Uyeda, H. T.; Deschamps, J. R.; Lassman, M. E.; Mattoussi, H., A hybrid quantum dot− antibody fragment fluorescence resonance energy transfer-based TNT sensor. Journal of the American Chemical Society 2005, 127 (18), 6744-6751.
88. Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S. T., Water‐soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie 2010, 122 (26), 4532-4536.
89. Yi, Y.; Deng, J.; Zhang, Y.; Li, H.; Yao, S., Label-free Si quantum dots as photoluminescence probes for glucose detection. Chemical Communications 2013, 49 (6), 612-614.
90. Du, J.; Yu, X.; Di, J., Comparison of the direct electrochemistry of glucose oxidase immobilized on the surface of Au, CdS and ZnS nanostructures. Biosensors and Bioelectronics 2012, 37 (1), 88-93.
91. Pavlidis, I. V.; Patila, M.; Bornscheuer, U. T.; Gournis, D.; Stamatis, H., Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends in biotechnology 2014, 32 (6), 312-320.
92. Lin, P.-Y.; Hsieh, C.-W.; Kung, M.-L.; Hsieh, S., Substrate-free self-assembled SiOx-core nanodots from alkylalkoxysilane as a multicolor photoluminescence source for intravital imaging. Scientific reports 2013, 3, 1703.
93. Kung, M.-L.; Lin, P.-Y.; Hsieh, C.-W.; Hsieh, S., Aqueous self-assembly and surface-functionalized nanodots for live cell imaging and labeling. Nano Research 2014, 7 (8), 1164-1176.
94. Azizi, N.; Saidi, M. R., Highly chemoselective addition of amines to epoxides in water. Organic letters 2005, 7 (17), 3649-3651.
95. Kamble, V.; Joshi, N., Synthesis of β-amino alcohols by ring opening of epoxides with amines catalyzed by cyanuric chloride under mild and solvent-free conditions. Green Chemistry Letters and Reviews 2010, 3 (4), 275-281.
96. Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B., The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research 2015, 8 (2), 355-381.
97. Yang, Z.-C.; Wang, M.; Yong, A. M.; Wong, S. Y.; Zhang, X.-H.; Tan, H.; Chang, A. Y.; Li, X.; Wang, J., Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chemical communications 2011, 47 (42), 11615-11617.
98. Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P., Surface functionalized carbogenic quantum dots. Small 2008, 4 (4), 455-458.
99. Zong, J.; Zhu, Y.; Yang, X.; Shen, J.; Li, C., Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chemical Communications 2011, 47 (2), 764-766.
100. Wang, J.; Wang, C. F.; Chen, S., Amphiphilic Egg‐Derived Carbon Dots: Rapid Plasma Fabrication, Pyrolysis Process, and Multicolor Printing Patterns. Angewandte Chemie 2012, 124 (37), 9431-9435.
101. Sun, Y.; Cao, W.; Li, S.; Jin, S.; Hu, K.; Hu, L.; Huang, Y.; Gao, X.; Wu, Y.; Liang, X.-J., Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy. Scientific reports 2013, 3, 3036.
102. Zhu, S.; Wang, L.; Zhou, N.; Zhao, X.; Song, Y.; Maharjan, S.; Zhang, J.; Lu, L.; Wang, H.; Yang, B., The crosslink enhanced emission (CEE) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chemical Communications 2014, 50 (89), 13845-13848.
103. Zheng, H.; Wang, Q.; Long, Y.; Zhang, H.; Huang, X.; Zhu, R., Enhancing the luminescence of carbon dots with a reduction pathway. Chemical Communications 2011, 47 (38), 10650-10652.
104. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D., Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society 2007, 129 (37), 11318-11319.
105. Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H., Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society 2006, 128 (24), 7756-7757.
106. Beganskienė, A.; Sirutkaitis, V.; Kurtinaitienė, M.; Juškėnas, R.; Kareiva, A., FTIR, TEM and NMR investigations of Stöber silica nanoparticles. Mater Sci (Medžiagotyra) 2004, 10, 287-290.
107. Innocenzi, P.; Brusatin, G.; Guglielmi, M.; Bertani, R., New Synthetic Route to (3-Glycidoxypropyl) trimethoxysilane-Based Hybrid Organic− Inorganic Materials. Chemistry of materials 1999, 11 (7), 1672-1679.
108. Innocenzi, P.; Brusatin, G.; Guglielmi, M.; Signorini, R.; Bozio, R.; Maggini, M., 3-(Glycidoxypropyl)-trimethoxysilane–TiO 2 hybrid organic–inorganic materials for optical limiting. Journal of Non-Crystalline Solids 2000, 265 (1), 68-74.
109. Levová, K.; Moserová, M.; Kotrbová, V.; Šulc, M.; Henderson, C. J.; Wolf, C. R.; Phillips, D. H.; Frei, E.; Schmeiser, H. H.; Mareš, J., Role of cytochromes P450 1A1/2 in detoxication and activation of carcinogenic aristolochic acid I: studies with the hepatic NADPH: cytochrome P450 reductase null (HRN) mouse model. Toxicological Sciences 2011, 121 (1), 43-56.
110. Stiborová, M.; Frei, E.; Sopko, B.; Sopková, K.; Marková, V.; Laňková, M.; Kumstýřová, T.; Wiessler, M.; Schmeiser, H. H., Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid: evidence for reductive activation by human NAD (P) H: quinone oxidoreductase. Carcinogenesis 2003, 24 (10), 1695-1703.
111. Stiborová, M.; Frei, E.; Hodek, P.; Wiessler, M.; Schmeiser, H. H., Human hepatic and renal microsomes, cytochromes P450 1A1/2, NADPH: Cytochrome P450 reductase and prostaglandin H synthase mediate the formation of aristolochic acid‐DNA adducts found in patients with urothelial cancer. International journal of cancer 2005, 113 (2), 189-197.
112. van Oers, J. M.; Zwarthoff, E. C.; Rehman, I.; Azzouzi, A.-R.; Cussenot, O.; Meuth, M.; Hamdy, F. C.; Catto, J. W., FGFR3 mutations indicate better survival in invasive upper urinary tract and bladder tumours. European urology 2009, 55 (3), 650-658.
113. 鈕聖文; 黃尚志, 馬兜鈴酸相關惡性腫瘤與腎病變之簡介與研究新進展. 內科學誌 2013, 24 (3), 189-197.
114. Lukin, M.; Zaliznyak, T.; Johnson, F.; de los Santos, C., Structure and stability of DNA containing an aristolactam II-dA lesion: implications for the NER recognition of bulky adducts. Nucleic acids research 2011, 40 (6), 2759-2770.
115. Roessl, U.; Leitgeb, S.; Pieters, S.; De Beer, T.; Nidetzky, B., In Situ Protein Secondary Structure Determination in Ice: Raman Spectroscopy‐Based Process Analytical Tool for Frozen Storage of Biopharmaceuticals. Journal of pharmaceutical sciences 2014, 103 (8), 2287-2295.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.74.227
論文開放下載的時間是 校外不公開

Your IP address is 3.17.74.227
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code