Responsive image
博碩士論文 etd-0620117-173718 詳細資訊
Title page for etd-0620117-173718
論文名稱
Title
鍍鉻薄膜厚度變化對殘留應力分佈之研究
A Study of Variations of Thickness on Residual Stresses Distribution of the Coating Chromium Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-19
繳交日期
Date of Submission
2017-07-20
關鍵字
Keywords
分佈均勻度、三維數位影像相關法、殘留應力、鍍薄膜
Distributive uniformity, Residual stress, Three-dimensional digital image correlation, Coated thin film
統計
Statistics
本論文已被瀏覽 5839 次,被下載 134
The thesis/dissertation has been browsed 5839 times, has been downloaded 134 times.
中文摘要
於鍍膜製程中,常因薄膜與基板熱膨脹係數不匹配而導致殘留應力的發生,進而造成鍍膜的破壞。然而,目前所有殘留應力量測的方式都是利用Stoney方程式,僅可計算薄膜的平均縱向殘留應力,但由於鍍膜製程中結晶顆粒大小的不同或厚度不均勻等因素,皆會造成薄膜上各點的殘留應力不同,且除縱向殘留應力外,橫向殘留應力亦會發生。
本研究提出一套新的量測方法,結合三維數位影像相關法與修正過之Stoney方程式,可同時測得鍍膜任何位置之縱向殘留應力與橫向殘留應力。本研究分別利用所提方法與三維表面輪廓儀中的Istar31軟體量測於矽基板鍍鎳薄膜之殘留應力,實驗結果顯示,兩者所得到的殘留應力值誤差在7%以下,證明本研究所提方法之準確度。接著,本研究利用所提方法探討於矽基板鍍製鉻薄膜時,薄膜厚度變化對殘留應力大小與分佈均勻性的影響,此處殘留應力指的是由縱向殘留應力與橫向殘留應力組成之等效殘留應力。從實驗結果得知,隨著鍍膜厚度的增加,平均等效殘留應力會隨之降低;當薄膜厚度從1μm增到3μm時,平均等效殘留應力下降了92.47%。若厚度的變化夠大,當薄膜的厚度增加時,殘留應力分佈會越來越均勻;當薄膜厚度從1μm增到3μm時,殘留應力分佈均勻度可以提高23.91%。
Abstract
During thin film deposition, the mismatching of thermal expansion coefficients between thin film and substrate may induce residual stress in the film, and damaging the coated specimen. Most researchers adopted Stoney’s equation to obtaining the residual stress at a coated thin film. However, only the average longitudinal residual stress at a coated thin film can be found. But due to variations of many parameters in the coating process, such as crystalline particle size and the unevenness of the thickness of coated film, will resulting in different residual stress at each location of a coated thin film. Also, in addition to longitudinal residual stress, the transverse residual stress will occur on the coated film.
In this study, a novel experimental technique, by combining the 3-D digital image correlation technique and the modified Stoney’s equation, is proposed, which can measure both longitudinal and transverse residual stresses at any location in a coated thin film. Considering a thin Ni-film coated on a Si-substrate, and the residual stress at the thin film was measured by using the proposed technique and 3-D surface profile with software Istar31, separately. By comparing the experimental results obtained from both approaches, it can be shown that the accuracy error of the proposed technique is less than 7%. Then, the proposed technique was adopted to study effects of thickness variations of thin Cr-film, which was coated on Si-substrate, on magnitude and distributive uniformity of residual stress at the film. Here, the residual stress means the equivalent residual stress resulted from longitudinal and transverse residual stresses. The experimental results indicate that the average equivalent residual stress decreased as the thickness of the coated thin film increased. When thicknesses of thin film increasing from 1μm to 3μm, the average equivalent residual stress was decreased by 92.47%. The results also show that if the film thickness increases enough, the distribution of equivalent residual stress will get more uniform. As the thickness increasing from 1μm to 3μm, the distributive uniformity of the equivalent residual stresses can be increased by 23.91%.
目次 Table of Contents
Contents

論文審定書 ……………………………………………………………… i
誌謝 …………………………………………………………….….…… ii摘要 ….................................................................................……….......... iii
Abstract ………..........………………………………………….….......... iv
Contents ...……………………………………………………….….…… vi
List of Tables …………………………………...……….……………... ix
List of Figures ………………………………...……………………. xi
Nomenclature ………………………………………………………..… xiii

Chapter 1 Introduction …………………………………………………. 1
1.1 Background ………………………….………………………. 1
1.2 Review of Literatures …………………………………………. 1
1.2.1 Digital Image Correlation………………………………... 1
1.2.2 Three-Dimensional Digital Image Correlation………… 3
1.2.3 Measurement of Residual Stress in Thin Films………… 4
1.3 Aims and Objectives ……...…….……………………………. 7
1.4 Dissertation Structure ……………………………………...…. 7

Chapter 2 Theory ………………………………………………………... 9
2.1 Longitudinal and Transverse Residual Stresses of Thin Films... 9
2.2 Measure the Radius of Curvature……..…………………….... 12
2.3 DIC Plane Deformation theory…………………….…………. 13
2.4 Theory Concerning Measurement of Three-Dimensional Displacements………………………….……………………. 15
2.5 Definition of Uniformity of Distribution of Residual Stress…. 17

Chapter 3 Experimental Method…….……….……………………… 27
3.1 Introduction ……………………………………..…………… 27
3.2 Image Information ……………………..…………………..… 28
3.3 Image Reconstruction ………………..…………………….… 28
3.4 Experimental Materials……...…………………………..…. 28
3.5 Measurements of Displacements in Thin Films……..……. 30
3.5.1 2D Digital Image Correlation Measurements…..….……. 30
3.5.2 3D Digital Image Correlation Measurements…..….…… 30

Chapter 4 Results and Discussions…………………………………… 41
4.1 Two-dimensional Digital Image Correlation Method for Residual Stress Measurement in the Nickel Coating of the Specimen..... 41
4.2 The Effects of Film Thickness Variations in Coated Cr Thin Films………………………………………………………… 43
4.2.1 Residual Stress Measurement in Coated Cr Thin Films…………………………………………………… 43
4.2.2 Residual Stress Distributions in Coated Cr Thin Films…………………………………………………… 46

Chapter 5 Conclusions and Future Prospects ……………………… 72
5.1 Conclusions ………………………………………………… 72
5.2 Future Prospects …………………………………………… 73

References …………………………………………….…….………… 74
VITA ……………………………………………………………….…... 79
參考文獻 References
References

1. W.H. Peters, W.F. Ranson, ‘‘Digital Image Techniques in Experimental Stress Analysis”, Optical Engineering, 21, 427-432, 1982.
2. M.A. Sutton, W.J. Wolters, W.H. Peter, W.F. Ranson, S.R. McNeil, ‘‘Determination of displacements using an improved digital image correlation method”, Image and Vision Computing, 1, 133-139, 1983.
3. T.C. Chu, W.F. Ranson, M.A. Sutton, W.H. Peters, ‘‘Applications of digital image correlation techniques to experimental mechanics”, Experimental Mechanics, 25, 232-244,1985.
4. M.A. Sutton, S.R. McNeil, J. Jang, M. Babai, ‘‘The effect of subpixel image restoration on digital image correlation estimates”, Optical Engineering, 27, 870-877,1988.
5. M. A. Sutton, M. Cheng, W.H. Peters, Y.J. Chao, S. R. McNeil, ‘‘Application of an optimized digital correlation method to planar deformation analysis”, Image Vis. Comput., 4, 143-50, 1986.
6. H. A. Bruck, S. R. McNeil, M. A. Sutton, W.H. Peters, ‘‘Digital image correlation using Newton-Raphson method of partial differential correction”, Experimental Mechanics, 29, 261-7, 1989.
7. M. A. Sutton, S. R. McNeil, J. Jang, M. Babai, ‘‘Effects of subpixel image restoration on digital correlation error estimates”, Opt. Eng., 27, 870-7, 1988.
8. S. R. McNeill, M. A. Sutton, Z. Miao, J. Ma, ‘‘Measurement of surface profile using digital image correlation”, Experimental Mechanics, 37, 13-20, 1997.
9. G. Han, M. A. Sutton, Y. J. Chao, ‘‘Study of stationary crack-tip deformation fields in thin sheets by computer vision”, Experimental Mechanics, 34, 125-40, 1994.
10. H. Lu, P. D. Cary, ‘‘Deformation measurements by digital image correlation: implementation of a second-order displacement gradient”, Experimental Mechanics, 40, 393-400, 2000.
11. B. Wattrisse, A. Chrysochoose, J. M. Muracciole, M. Nemoz-Gaillard, ‘‘Analysis of strain localization during tensile tests by digital image correlation”, Experimental Mechanics, 41, 29-39, 2001.
12. Y. Wang, A. M. Cuitino, ‘‘Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation”, Int. J. Solids Struct., 39, 3777-96, 2002.
13. J.N. Perie, S. Calloch, C. Cluzel, F. Hild, ‘‘Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model”, Experimental Mechanics, 42, 318-328, 2002.
14. G. B. Broggiato, G. M. Newaz, D. Amodio, ‘‘Application of digital speckle correlation for strain measurement in composites”, Key Engineering Materials, 221, 337-346, 2002.
15. G.C. Jin, Z. Wu, N.K. Bao, X.F. Yao, ‘‘Digital speckle correlation method with compensation technique for strain field measurements”, Optics and Lasers in Engineering, 39, 457-464, 2003.
16. N. Liu, X.F. Yao, G.C. Jin, ‘‘Experiment of the fracture behavior of cracked beams strengthened with carbon fiber cloth”, Journal of Tsinghua University, 43, 1511-1518, 2003.
17. X.F. Yao, L.B. Meng, G.C. Jin, ‘‘Full-field deformation measurement of fiber composite pressure vessel using digital speckle correlation method”, Polymer Testing, 24 , 245-251, 2005.
18. D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D.V. Hemelrijck, A.M. Habraken, ‘‘Quality assessment of speckle patterns for digital image correlation”, Optics and Lasers in Engineering, 44, 1132–45, 2006.
19. B. Pan, K. Qian, H. Xie, A. Asundi, ‘‘On errors of digital image correlation due to speckle patterns”, Proc. SPIE, 7375, 2009.
20. S. Yaofeng, J.L. Pang, ‘‘Study of optimal subset size in digital image correlation of speckle pattern images”, Optics and Lasers in Engineering, 45, 967-74, 2007.
21. B. Pan, H.M. Xie, Z.Y. Wang, K.M. Qian, Z.Y. Wang, ‘‘Study on subset size selection in digital image correlation for speckle patterns”, Opt. Express, 16, 7037-48, 2008.
22. D. Lecompte, H. Sol, J. Vantomme, A. Habraken, ‘‘Analysis of speckle patterns for deformation measurements by digital image correlation”, Proc. SPIE, 6341, 2006.
23. Y.Q. Wang, M.A. Sutton, H.A. Bruck, H.W. Schreier, ‘‘Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements”, Strain, 45, 160-78, 2009.
24. B. Pan, Z. Lu, H. Xie, ‘‘Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation”, Optics and Lasers in Engineering, 48, 469-77, 2010.
25. B. Pan, D. Wu, Y. Xia, ‘‘High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability guided digital image correlation”, Optics and Lasers in Engineering, 48, 841-848, 2010.
26. M.D. Strycker, L. Schueremans, W.V. Paepegem, D. Debruyne, “Measuring the thermal expansion coefficient of tubular steel specimens with digital image correlation techniques”, Optics and Lasers in Engineering, 48, 978-986, 2010.
27. M.D. Strycker, P. Lava, W.V. Paepegem, L. Schueremans, D. Debruyne, “Measuring welding deformations with the digital image correlation technique”, Welding Journal, 90, 107-12, 2011.
28. C. Leitäo, I. Galväo, R. Leal, D. Rodrigues, “Determination of local constitutive properties of aluminum friction stir welds using digital image correlation”, Mater Des, 33, 69–74, 2012.
29. J.G. Lunt, M. Korsunsky, “A review of micro-scale focused ion beam milling and digital image correlation analysis for residual stress evaluation and error estimation”, Surface & Coatings Technology, 283, 373-388, 2015.
30. A. Karimi, T. Sera, S. Kudo, M. Navidbakhsh, “Experimental verification of the healthy and atherosclerotic coronary arteries incompressibility via Digital Image Correlation”, Artery Research, 16, 1-7, 2016
31. R.A. Tsai, “A versatile camera calibration technique for high accuracy 3-D machine vision metrology using off-the-shelf TV cameras and lenses”, IEEE Journal of Robotics and Automation, 3, 323-344, 1987.
32. Z.L. Kahn-Jetter and T.C. Chu, “Three-dimensional displacement measurements using digital image correlation and photogrammic analysis”, Experimental Mechanics, 30, 10-16, 1990.
33. M.A. Sutton, W.H. Petters, Y.J. Chao and P.F. Luo, “Accurate measurement of three-dimensional deformation in deformable and rigid bodies using computer vision”, Experimental Mechanics, 33, 123-132, 1993.
34. N. Lenoir, M. Bornert, J. Desrues, P. Be´suelle, G. Viggiani, “Volumetric digital image correlation applied to X-ray micro tomography images from triaxial compression tests on argillaceous rocks”, Strain, 43, 193-205, 2007.
35. M.A. Suttona, J.H. Yana, V. Tiwaria, H.W. Schreierb, J.J. Orteuc, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements”, Optics and Lasers in Engineering, 46, 746-757, 2008.
36. P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A.A. Pitsillides, S. Shefelbine, “Using digital image correlation to determine bone surfaces trains during loading and after adaptation of the mouse tibia”, Journal of Biomechanics, 43, 599-605, 2010.
37. M. Yamada, Y. Tanabe, A. Yoshimura, “Three-dimensional measurement of CFRP deformation during high-speed impact loading”, Nuclear Instruments and Methods in Physics Research Section A, 646, 219-26, 2011.
38. M. Pankow, B. Justusson, A. Salvi, A.M. Waas, C.F. Yen, S. Ghiorse, “Shock response of 3D woven composites: an experimental investigation”, Composite Structures, 93, 1337-46, 2011.
39. S. Gupta, V. Parameswaran, M. A. Sutton, A. Shukla1, “Study of dynamic underwater implosion mechanics using digital image correlation”, Proc. R. Soc. A, 470, 20140576, 2015.
40. M. Hokka, N. Mirow, H. Nagel, M. Irqsusi, S. Vogt, V.T. Kuokkala, “In vivode formation measurements of the human heart by 3D digital image correlation”, Journal of Biomechanics, 48, 2217-20, 2015.
41. X. Shao, X. Dai, Z. Chen, X. He, “Real-time 3D digital image correlation method and its application in human pulse monitoring”, Appl. Opt., 55, 696-704, 2016.
42. C.H. Chien, T. Chen, F. I. Su, C. Y. Lin, T.H. Su, Y.M. Lin, Y.C. Liu, T.L. Tsay, “Thickness effects on the thermal expansion coefficient of indium tin oxide/polyethylene terephthalate film”, Experimental Techniques, 40, 639-644, 2016.
43. C. Bumgardner, B. Croom, X.D. Li, “High-temperature delamination mechanisms of thermal barrier coatings: In-situ digital image correlation and finite element analyses”, Acta Materialia, 128, 54-63, 2017.
44. G. G. Stoney, “The Tension of Metallic films deposited by electrolysis”, Proceedings of the Royal Society, 82, 172-175, 1909.
45. W. Fang, H. C. Tasi., C.Y. Lo, “Determining thermal expansion coefficients of thin films using micro machined cantilevers”, Sensors and Actuators, 77, 21-27, 1996.
46. L.B. Freund, J.A. Floro, E. Chason, “Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations”, Journal of applied physics, 88, 1987-1989, 1999.
47. A. Ni, D. Sherman, R. Ballarini, H. Kahn, B. Mi, S. M. Phillips, A. H. Heuer, “Optimal design of multilayered polysilicon films for prescribed curvature”, Journal of materials science, 38, 4169-4173, 2003.
48. M. N. G. Nejhad, C.L. Pan, H.W. Feng, “Intrinsic strain modeling and residual stress analysis for thin-film processing of layered structures”, Journal of Electronic Packaging, 125, 4-17, 2003.
49. M. Zhu, P.B. Kirby, “Governing equation for the measurement of non-uniform stress distributions in thin films using a substrate deformation technique”, Journal of applied physics, 88, 1179013, 2006.
50. Y. Zhang, Y.P. Zhao, “Applicability range of Stoney's formula and modified formulas for a film/substrate bilayer”, Journal of Applied Physics, 99, 053513, 2006.
51. M. Sebastiani, C. Eberl, E. Bemporad, G. M. Pharr, “Depth-resolved residual stress analysis of thin coatings by a new FIB–DIC method”, Materials Science and Engineering A, 528, 7901-7908, 2011.
52. J. Zhu, H. Xie, Z. Hu, P. Chen, Q. Zhang, “Residual stress in thermal spray coatings measured by curvature based on 3D digital image correlation technique”, Surface & Coatings Technology, 206, 1396-1402, 2011.
53. Z. Hu, H. Xie, J. Lu, J. Zhu, H. Wang, “Residual stresses measurement by using ring-core method and 3D digital image correlation technique”, Measurement Science and Technology, 24, 085604, 2013.
54. D. Antartis, I. Chasiotis, “Residual stress and mechanical property measurements in amorphous Si photovoltaic thin films”, Solar Energy, 105, 694-704, 2014.
55. M. Takegami, R. Nakano, H. Murotani, “Long-term time dependence of internal stress in lanthanum titanium oxide (H4) optical thin films”, Applied Optics, 56, 96-99, 2017.
56. N. Tajima, H. Murotani, S. Matsumoto, and H. Honda, “Stress control in optical thin films by sputtering and electron beam evaporation”, Applied Optics, 56 131-135, 2017.
57. E. Dobroˇcka, P. Novák, D. Búc, L. Harmatha, J. Murín, “X-ray diffraction analysis of residual stresses in textured ZnO thin films”, Applied Surface Science, 395, 16-23, 2017.
58. A. Misra, S. Fayeulle, H. Kung, T. E. Mitchell, M. Nastasi, “Effects of ion irradiation on the residual stresses in Cr thin films”, Appl. Phys. Lett., 73, 891-893, 1998.
59. A. Misra, S. Fayeulle1, H. Kung, T.E. Mitchell, M. Nastasi, “Residual stresses and ion implantation effects in Cr thin films”, Nuclear Instruments and Methods in Physics Research B, 148, 211-215, 1999.
60. R. Daniel, K. J. Martinschitz, J. Keckes, C. Mitterer, “The origin of stresses in magnetron-sputtered thin films with zone T structures”, Acta Materialia, 58, 2621-2633, 2010.
61. Q. Kong, L. Ji, H. Li, X. Liu, Y. Wang, J. Chen, “Influence of substrate bias voltage on the microstructure and residual stress of Cr N films deposited by medium frequency magnetron sputtering”, Materials Science and Engineering: B, 176, 850-854, 2011.
62. J. S. Milton, J. C. Arnold, Introduction to Probability and Statistics, 2nd ed., McGraw Hill, New York, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code