Responsive image
博碩士論文 etd-0620118-154548 詳細資訊
Title page for etd-0620118-154548
論文名稱
Title
利用改質NaY沸石吸附再生燃料油脫硫之研究
Study on desulfurization of regenerated fuel oil by modified NaY zeolite
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-12
繳交日期
Date of Submission
2018-07-20
關鍵字
Keywords
NaY沸石、離子交換、銅、微波、吸附脫硫
Y zeolite, ion exchange, adsorption desulfurization, microwave, copper
統計
Statistics
本論文已被瀏覽 5710 次,被下載 1
The thesis/dissertation has been browsed 5710 times, has been downloaded 1 times.
中文摘要
近年來台灣空氣污染的情形越來越嚴重,硫成分存在於燃料油品中,經過引擎燃燒後排放成為SO2,逐漸在空氣中反應變成硫酸再藉由沉降形成所謂的酸雨,更嚴重的話會形成二次氣膠降低行車及行人的視線造成交通上的危害。而曝露於低濃度的二氧化硫中,會造成部分敏感族群的支氣管收縮,對於人們呼吸道疾病及肺功能影響皆會造成嚴重的問題。本研究探討再生燃料油脫硫之可行性,生產超低硫燃料,以具有較高比表面積的擔體NaY沸石,先利用氫氧化鈉的溶出性來提升沸石本身中孔(介孔),並搭配微波製備液相離子交換的方法,將金屬離子引入沸石的骨架中改質成為脫硫吸附劑,後續再進行脫硫試驗並探討出脫硫之可行性。經由實驗來探討吸附材料之吸附效能、吸附容量、再生燃料油脫硫效能,並利用ICP、XRD、SEM、TEM、BET、NH3-TPD、FTIR等儀器分析吸附劑物化特性。
Abstract
In recent years, the situation of air pollution in Taiwan has become more and more serious. The sulfur component is present in the fuel oil. After being burned by the engine, it is discharged into SO2. It gradually reacts in the air to become sulfuric acid and then forms a so-called acid rain by sedimentation. If it is more serious, it will form. The secondary gas glue reduces the visibility of traffic and pedestrians and causes traffic hazards. Exposure to low concentrations of sulfur dioxide can cause bronchoconstriction in some sensitive groups, which can cause serious problems for people with respiratory diseases and lung function.This study explores the feasibility of desulfurization of regenerated fuel oil, producing ultra-low sulfur fuel, with a higher specific surface area of the carrier NaY zeolite, first using the dissolution of sodium hydroxide to enhance the pores (mesopores) of the zeolite itself, and With the method of microwave preparative liquid phase ion exchange, the metal ions are introduced into the framework of the zeolite to be converted into a desulfurization adsorbent, followed by desulfurization test and the feasibility of desulfurization. The adsorption performance, adsorption capacity, and desulfurization efficiency of regenerated fuel oil were investigated by experiments. The physicochemical properties of the adsorbents were analyzed by ICP, XRD, SEM, TEM, BET, NH3-TPD, FTIR and other instruments.
目次 Table of Contents
學位論文審定書 i
謝誌 ii
摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 沸石基本性質 3
2-1-1 沸石發現與進展 3
2-1-2 沸石結構與分類 3
2-1-3 沸石孔洞特性 5
2-1-4 沸石的應用 6
2-2 吸附 7
2-2-1 吸附基本簡介 7
2-2-2 吸附機制 8
2-2-3 吸附影響因素 9
2-2-4 選擇性吸附 10
2-2-5 吸附等溫曲線 10
2-2-6 脫附遲滯曲線 13
2-2-7 吸附脫硫原理 15
2-3 吸附劑 16
2-3-1 吸附劑特性 16
2-3-2 吸附劑鹼處裡改性 17
2-3-3 吸附劑金屬披覆改質方法 18
2-3-4 吸附系觸媒之活性衰退現象 19
2-3-5 改質後吸附劑特性相關研究 20
2-4 空氣污染二氧化硫 22
2-4-1 二氧化硫危害特性 22
2-4-2 二氧化硫危害影響 23
第三章 研究方法 24
3-1 研究架構與流程 24
3-1-1 NaY沸石利用微波法溶解改性前處裡 25
3-1-2 CuNaY液相微波製備離子交換法 26
3-1-3 利用改質吸附劑進行吸附脫硫試驗 27
3-2 實驗材料與藥品 28
3-3 實驗設備與原理介紹 29
3-3-1 感應耦合電漿原子發射光譜儀 29
3-3-2 元素分析儀 30
3-3-3 環境掃描式電子顯微鏡 31
3-3-4 X光粉末繞射分析儀 32
3-3-5 比表面積分析儀 33
3-3-6 熱重分析儀 34
3-3-7 穿透式電子顯微鏡 35
3-3-8 化學分析電子能譜儀 36
3-3-9 程溫脫附儀 37
3-3-10 傅立葉轉換紅外光譜儀 38
3-3-11 X射線螢光光譜儀 39
3-3-12 密閉式微波設備 40
3-3-13 高溫鍛燒爐 41
3-3-14 循環式送風式烘箱 41
3-3-15 液壓薄片機 42
3-3-16 離心機 42
第四章 結果與討論 43
4-1 NaY沸石基本特性分析 43
4-1-1全量分析(ICP-MS) 43
4-1-2單點元素分析(EDS) 44
4-1-3表面型態鑑定(SEM) 45
4-1-4 X光粉末繞射分析(XRD) 46
4-1-5 比表面積分析(BET) 47
4-2 NaY沸石利用NaOH鹼處裡改性 48
4-2-1不同濃度NaOH對製備中孔吸附劑影響(ICP) 48
4-2-2不同濃度NaOH對製備中孔吸附劑影響(SEM) 50
4-2-3不同濃度NaOH對製備中孔吸附劑影響(TEM) 54
4-2-4不同濃度NaOH對製備中孔吸附劑影響(XRD) 55
4-2-5不同濃度NaOH對製備中孔吸附劑影響(BET) 57
4-2-6不同濃度NaOH對製備中孔吸附劑影響(TPD-NH3) 60
4-2-7不同濃度NaOH對製備中孔吸附劑影響(TGA) 61
4-3 利用微波輻射製備改質金屬銅CuNaY吸附劑 62
4-3-1利用微波輻射製備改質CuNaY吸附劑(ICP) 62
4-3-2利用微波輻射製備改質CuNaY吸附劑(SEM) 64
4-3-3利用微波輻射製備改質CuNaY吸附劑(TEM) 67
4-3-4利用微波輻射製備改質CuNaY吸附劑(XRD) 68
4-3-5利用微波輻射製備改質CuNaY吸附劑(BET) 70
4-3-6利用微波輻射製備改質CuNaY吸附劑(TPD-NH3) 75
4-3-7利用微波輻射製備改質CuNaY吸附劑(TGA) 76
4-3-7利用微波輻射製備改質CuNaY吸附劑(XPS) 77
4-4 利用改質CuNaY吸附劑進行脫硫試驗 78
4-4-1不同硝酸銅濃度對脫硫之影響 78
4-4-2不同加熱溫度對脫硫之影響 79
4-4-3不同吸附時間對脫硫之影響 80
4-4-4脫硫後吸附劑官能基鑑定 81
4-5 成本效益分析 82
4-5-1設備及人力成本估算 82
4-5-2設備操作成本估算 83
4-5-3原料成本估算 84
第五章 結論與建議 86
5-1結論 86
5-2 建議 87
參考文獻 88

圖目錄
圖2-1 八面沸石結構 4
圖2-2 A型沸石結構 4
圖2-3 Y型沸石結構 4
圖2-4 吸附過程意象圖 7
圖2-5 物理吸附與化學吸附意象圖 8
圖2-6 Type I 等溫吸附曲線 10
圖2-7 Type II等溫吸附曲線 10
圖2-8 Type III等溫吸附曲線 11
圖2-9 Type IV等溫吸附曲線 11
圖2-10 Type V等溫吸附曲線 12
圖2-11 Type VI等溫吸附曲線 12
圖2-12 脫附遲滯曲線 13
圖2-13凡得瓦力示意圖 15
圖3-1 實驗流程架構圖 21
圖3-2 60 mesh篩網 21
圖3-3 配置NaOH溶液 21
圖3-4 微波輻射處裡 21
圖3-5 抽氣過濾分離 22
圖3-6 經NaOH前處裡載體 22
圖3-7 配置硝酸銅溶液 22
圖3-8 微波輻射處裡 22
圖3-9 抽氣過濾分離 22
圖3-10 高溫爐鍛燒 22
圖3-11 改質CuNaY吸附劑 23
圖3-12 脫硫試驗 23
圖3-13 抽氣過濾分離 23
圖3-14 脫硫後吸附劑 24
圖3-15 感應耦合電漿原子發射光譜儀 26
圖3-16 元素分析儀 27
圖3-17 環境掃描式電子顯微鏡 28
圖3-18 X光粉末繞射分析儀 29
圖3-19 比表面積分析儀 30
圖3-20 熱重分析儀 32
圖3-21 穿透式電子顯微鏡 32
圖3-22 化學分析電子能譜儀 33
圖3-23 程溫脫附儀 34
圖3-24 傅立葉轉換紅外光譜儀 35
圖3-25 X射線螢光光譜儀 36
圖3-26 密閉式微波設備 37
圖3-27 高溫鍛燒爐..................................................................................... 38
圖3-28 循環式送風式烘箱 38
圖3-29 液壓薄片機 39
圖3-30 離心機 39
圖4-1 NaY沸石分析EDS圖譜 44
圖4-2 NaY沸石10000x SEM成像圖 45
圖4-3 NaY沸石20000x SEM成像圖 45
圖4-4 NaY沸石分析XRD圖譜 46
圖4-5 NaY沸石氮氣吸附等溫線 47
圖4-6 在0.5M條件下不同微波溫度及時間對矽鋁比之影響 48
圖4-7 在1.0M條件下不同微波溫度及時間對矽鋁比之影響 49
圖4-8 在1.5M條件下不同微波溫度及時間對矽鋁比之影響 49
圖4-9 在0.5M改性條件在不同微波溫度之SEM成像圖 51
圖4-10 在1.0M改性條件在不同微波溫度之SEM成像圖 52
圖4-11 在1.5M改性條件在不同微波溫度之SEM成像圖 53
圖4-12 母體NaY沸石TEM鏡像圖 54
圖4-13 NaOH改性吸附劑載體TEM鏡像圖 54
圖4-14 在0.5M條件下不同微波溫度XRD圖譜 55
圖4-15 在1.0M條件下不同微波溫度XRD圖譜 56
圖4-16 在1.5M條件下不同微波溫度XRD圖譜 56
圖4-17 不同NaOH濃度及微波溫度對比表面積之影響 58
圖4-18 不同NaOH濃度及微波溫度對孔徑之影響 58
圖4-19 不同NaOH濃度及微波溫度對中孔體積之影響 59
圖4-20 不同NaOH濃度及微波溫度對孔體積之影響 59
圖4-21 母體NaY沸石、NaY-NaOH吸附劑載體TCD曲線圖 60
圖4-22 NaY-NaOH吸附劑載體TGA曲線圖 61
圖4-23 不同微波時間對NaY-NaOH銅離子交換之影響 62
圖4-24 不同濃度硝酸銅改質對NaY-NaOH之影響 63
圖4-25 硝酸銅濃度0.1 M條件下SEM成像圖 64
圖4-26 硝酸銅濃度0.2M條件下SEM成像圖 64
圖4-27 硝酸銅濃度0.5M條件下SEM成像圖 65
圖4-28 硝酸銅濃度1.0 M條件下SEM成像圖 65
圖4-29 硝酸銅濃度1.5M條件下SEM成像圖 66
圖4-30 硝酸銅濃度2.0 M條件下SEM成像圖 66
圖4-31 NaOH改性吸附劑載體TEM鏡像圖 67
圖4-32 CuNaY改質吸附劑TEM鏡像圖 67
圖4-33不同濃度下改質CuNaY之XRD圖譜 68
圖4-34 NaY、NaY-NaOH、CuNaY之XRD圖譜 69
圖4-35 不同濃度下改質CuNaY之比表面積圖 70
圖4-36 CuNaY-0.1M氮氣吸附等溫線 71
圖4-37 CuNaY-0.2M氮氣吸附等溫線 71
圖4-38 CuNaY-0.5M氮氣吸附等溫線 72
圖4-39 CuNaY-1.0M氮氣吸附等溫線 72
圖4-40 CuNaY-1.5M氮氣吸附等溫線 73
圖4-41 CuNaY-2.0M氮氣吸附等溫線 73
圖4-42 不同濃度下改質CuNaY之孔徑圖 74
圖4-43 不同濃度下改質CuNaY之孔體積圖 74
圖4-44 NaY沸石、NaY-NaOH、CuNaY之TCD曲線圖 75
圖4-45 NaY-NaOH、CuNaY之TGA曲線圖 76
圖4-46 改質CuNaY吸附劑XPS分析圖譜 77
圖4-47 不同濃度下改質CuNaY吸附劑對再生燃料油脫硫之影響 78
圖4-48 不同濃度下改質CuNaY吸附劑對再生燃料油去硫率之分析 79
圖4-49 不同加熱溫度條件下對再生燃料油去硫率之分析 79
圖4-50 不同反應時間條件下對再生燃料油去硫率之分析 80
圖4-51 NaY 沸石、NaY-NaOH、 CuNaY之FTIR分析圖譜 81




表目錄
表2-1 IUPAC定義孔徑大小 5
表2-2 物理吸附與化學吸附之差異 8
表2-3 各種改質沸石相關文獻參考 18
表2-4 各種吸附劑相關用途介紹 18
表3-1 實驗使用藥品及耗材 25
表4-1 NaY沸石之組成份 43
表4-2 NaY沸石比表面積分析數據 47
表4-3 IUPAC定義孔徑範圍 47
表4-4 不同NaOH濃度及微波溫度對比表面積之結果 57
表4-5 NaY沸石元素分析結果 61
表4-6 不同硝酸銅濃度對比表面積之結果NaY沸石元素分析結果 70
表4-7 設備及人力成本估算 80
表4-8 操作設備電費成本 81
表4-9 電價表 81
表4-10 年平均電價計算 82
表4-11 原料成本分析估算 82
表4-12 微波進行吸附劑製備所需成本分析 83
參考文獻 References
Aguado S., Bergeret G., Daniel C., Farrusseng D.Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A.J. Am. Chem. Soc, Vol. 134,2012,4635-14637.
Agudelo J.L., Mezar B.i., Hensen E.J.M., Giraldo S.A., Hoyos L.J. On the effect of EDTA treatment on the acidic properties of USY zeolite and its performance in vacuum gas oil hydrocracking. Applied Catalysis A: General,Vol. 488,2014,219-230.
Anett K.,András D. Adsorption isotherms of some alkyl aromatic hydrocarbons and surface energies on partially dealuminated Y faujasite zeolite by inverse gas chromatography. Journal of Chromatography A,Vol. 1362,2014,250-261.
Allen A.C.,Vinay P.,Natalia S. Effect of Cu and Zn ion-exchange locations on mordenite performance in dimethyl ether carbonylation. Microporous and Mesoporous Materials,Vol. 263,2018,220-230.
Al-Shahrani F., Xiao T.,. Llewellyn S.A., Barri S., Jiang Z., Shi H.,Martinie G., Greena M.L.H.Appl. Catal. B,Vol. 73,2007,311.
Amer M.A.,Meaz T.M.,Mostafa A.G.,El-Ghazally H.F. Influence of annealing process on phase transition of Cu–Al nanoferrites synthesized by a coprecipitation method.Materials Science in Semiconductor Processing,Vol.36, 2015,49-56.
Amer M.A.,Seyed M.A., Seyed J.R.,Mansour B. Dependency of acidic and surficial characteristics of steamed Y zeolite on potentially effective synthesis parameters: Screening, prioritizing and model development. Microporous and Mesoporous Materials,Vol. 259,2018,142-154.
Arturo J., Hernández M., Ralph T., Desulfurization of liquid fuels by adsorption via π-complexation with Cu(I)-Y and Ag-Y zeolites,Vol. 42 ,2003,123-129.
Ayten A. Effect of alkali-treatment on the characteristics of natural zeolites with different compositions. Journal of Colloid and Interface Science,Vol. 523,2018,266-281.
Babich I.V., Moulijn J.A.Deactivation and Regeneration of Zeolite Catalysts.Fuel, Vol. 82,2003, 607.
Baek S., Kim J., Ihm S., Design of dual functional adsorbent/catalyst system for the control of VOC’s by using metal-loaded hydrophobic Y-zeolites,Catalysis Today, Vol. 93-95,2004,575-581.
Bayer-Oglesby L.,Grize L.,Gassner M.,Decline of ambient air pollution levels and improved respiratory health in Swiss children,Environ Health Perspect,Vol. 113,2005,1632-1637.
Bhandari,V.M.,Ko,C.H.,Park,J.G.,Han,S.S.,Cho,S.H., Kim J.N. Desulfurization of diesel using ion-exchanged zeolites.Chemical Engineering Science,Vol. 61,2006,2599-2608.
Breck D., Zeolite molecular sieves, Wiley, New York, 1974.
Brunekreef B.,Beelen R.,Hoek G.,Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in The Netherlands:the NLCS-AIR study,Res Rep Health Eff Inst,2009,73-89.
Calleja G., Pau J., Calles J., Pure and Multicomponent Adsorption Equilibrium of Carbon Dioxide, Ethylene and Propane on ZSM-5 Zeolites with Different Si/Al Ratios, Journal of Chemical & Engineering Data,Vol. 43,1998, 994-1003.
Chen H., Wang Y., Yang F.H., Yang R.T.Desulfurization of high-sulfur jet fuel by mesoporous π-complexation adsorbents. Chem. Eng. Sci,Vol. 64,2009,5240-5246.
Chen H.,Wang Y, Yang F.H.,Yang R.T.Desulfurization of high-sulfur jet fuel by mesoporous π-complexation adsorbents.Chem. Eng. Sci,Vol. 642009,5240-5246.
Chintawar P., Greene H., Adsorption and catalytic destruction of trichloroethylene in hydrophobic zeolites, Applied Catalysis B: Environmental,Vol. 14, 1997, 37-47.
Clausse B., Garrot B., Cornier C., Paulin C., Simonnot-Grange M., Boutros F., Adsorption of chlorinated volatile organic compounds hydrophobic faujasite- correlation between the thermodynamic and kinetic properties and the prediction of air clraning, Microporous and Mesoporous Materials, Vol. 25, 88, 1998, 169-177 .
Choung J.W., Nam I.S.Characteristics of copper ion exchanged mordenite catalyst deactivated by HCl for the reduction of NOx with NH3.Appl. Catal, 64,2006,42-50.
Cooper C., Alley F., Air Pollution Control:A Design Approach, Second Edition, 1994.
Cruciani G., Zeolites upon heating: Factor governing their thermal stability and structural changes, Journal of Physics and Chemistry solids, Vol. 67, 2006, 1973-1994.
David P.G., Brian P.B.,Evan A.,Jason H.,George M.B.,Julia A.V. Nickel impregnated mesoporous USY zeolites for hydrodeoxygenation of anisole. Microporous and Mesoporous Materials,Vol 261,2018,18-28.
Degnan T., Chitnis G., Schipper P., History of ZSM-5 fluid catalytic cracking additive development at Mobil, Microporous and Mesoporous Materials, Vol. 35-36, 2000, 245-252 .
Dellabianca M.,Faniglione S., Angelis D.,Inhaled ammonium persulphate inhibits non-adrenergic,non-cholinergic relaxations in the Guinea pig isolated trachea Respiration,79,2010,411-419.
Douglas M.,Hitomi F.Terminology of elemental speciation – An IUPAC perspective. Coordination Chemistry Reviews, Vol 352,2017, 424-431.
Fan Y., Bao X., Lin X., Shi G., Liu H., Acidity Adjustment of HZSM-5 Zeolites by Dealumination and Realumination with Steaming and Citric Acid Treatments, Journal of Physical Chemistry B, vol.110, 2006, 15411-15416.
Farzin Nejad N.,Shams E.,Amini M.K.,Bennett J.C.Synthesis of magnetic mesoporous carbon and its application for adsorption of dibenzothiophene.Fuel Process. Technol,106,2013,376-384.
Fayazi M.,Taher M.A., Afzali D.,Mostafavi A. Preparation of molecularly imprinted polymer coated magnetic multi-walled carbon nanotubes for selective removal of dibenzothiophene.Mater. Sci. Semicond. Process,40,2015,501-507.
Farrauto R.J., Bartholomew C.H.Fundamentals of Industrial Catalytic Processes.Chapman and Hall,New York,1997.
Gora-Marek K.,Tarach K.,Tekla J.,Olejniczak Z., Kuśtrowski P.,Liu L.,Martinez-Triguero J.,Rey F.Hierarchical mordenite dedicated to FCC process: catalytic performance regarding textural and acidic properties.Phys. Chem. C 2014;118,28043-28054.
Groen J.,Zhu W.,Brouwer S.,Huynink S.,Kapteijn F.,Moulijn J.,Pérez-Ramírez J., Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication,J. Am. Chem. Soc,129 (2) ,2007,355-360.
Groen,J.C., Abello S., Villaescusa,L.A.,Perez-Ramirez J.Mesoporous beta zeolite obtained by desilication.Microporous Mesporous Mater.2008;114,93-102
Gupta A., Gaur V., Verma N., Breakthrough analysis for adsorption of sulfur-dioxide over zeolites,Chemical Engineering and Processing,Vol. 43,2004,9-22.
Haiyan Liu.,Tong S.,Tiesen L.,Pei Y.,Gang S.,Xiaojun B. Green synthesis of zeolites from a natural aluminosilicate mineral rectorite: Effects of thermal treatment temperature. Applied Clay Science,Vol 90,2014,53-60 .
He Y., Krishna R., Chen B.Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons.Energy Environ,Sci, 5,2012, 9107-9120.
Hua S., Xia W.,Min D.,Jiaojing Z.,Feng L.,Hualin S. Deep desulfurization of model gasoline by selective adsorption over Cu–Ce bimetal ion-exchanged Y zeolite. Fuel Processing Technology 2013;116,52-62.
Huang L., Qin Z., Wang G., Du M., Ge H., Li X.A detailed study on the negative effect of residual sodium on the performance of Ni/ZnO adsorbent for diesel fuel desulfurization.Ind. Eng. Chem. Res,49,2010,4670-4675.
Hui Y., Lin-P., Fei L., Long Z., Adsorption of benzothiophene from fuels on modified NaY zeolites, Fuel Processing Technology, 2015, 134, 284-289.
Ibe I.M., Gómez S., Malinger K.A., Fanson P.,Suib S.L.Appl. Catal B,69,2007,235.
Ichiura H., Nozaki M., Kitaoka T., Tanaka H., Influence of uniformly of zeolite sheets prepared using a papermaking technique on VOC adsorptivity,Advances in Environmental Research,Vol. 7,2003,975-979.
Ivanov D.P.,Pirutko L.V.,Panov G.I. Effect of steaming on the catalytic performance of ZSM-5 zeolite in the selective oxidation of phenol by nitrous oxide. Journal of Catalysis,Vol 311,2014,424-432.
Iwamoto M., Yahiro H., Torikai Y., Yoshioka T., Mizuno N., Novel Preparation Method of Highly Copper Ion-exchanged ZSM-5 Zeolite and Their Catalytic Activities for No Decomposition,Chemistry Letters,vol.19,1990,1967-1970.
Jayaraman A., Yang F.H., Yang R.T.Effects of nitrogen compounds and polyaromatic hydrocarbons on desulfurization of liquid fuels by adsorption via π-complexation with Cu(I)Y zeolite,Energy Fuels, 20,2006,909-914.
Katada N., Igi H., Kim J., Niwa M., Phys J.Determination of the Acidic Properties of Zeolite by Theoretical Analysis of Temperature-Programmed Desorption of Ammonia Based on Adsorption Equilibrium.Chem,B,101,1997,5969.
Kevin X.L.,George T.,Julia A.V. Removal of benzothiophene and dibenzothiophene from hydrocarbon fuels using CuCe mesoporous Y zeolites in the presence of aromatics. Applied Catalysis B: Environmental.Vol 234,2018,130-142.
Kim H.J.,Shi Y.,He J.Adsorption characteristics of CO2 and CH4 on dry and wet coal from subcritical to supercritical conditions,Chem. Eng. J, Vol 171,2011,45-53.
Kim K.C., Lee C.Y., Fairen-Jimenez D., Nguyen S.T., Hupp J.T., Snurr R.Q.Computational study of propylene and propane binding in metal-organic frameworks containing highly exposed Cu+ or Ag+ Cations.J. Phys.Chem. C, 118,2014,9086-9092.
Kim Y.H.,Hwang M S., Kim H J.,Kim J Y .,Lee Y.Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films.J. Appl. Phys,90,2001,3367.
Klein C.,Hurlbut J.,Manual of Mineralogy,John Wiley and Sons,1993.
Kou J. , Lu C., Sun W., Zhang L., Xu Z.Facile fabrication of cuprous oxide-based adsorbents for deep desulfurization,ACS Sustainable Chem. Eng,3,2015,3053-3061.
Kulprathipanja S.,Zeolites in Industrial Separation and Catalysis,Wiley Online Library,2010.
Kunzli N.,Medina S.,Kaiser R.,Assessment of deaths attributable to air pollution: should we use risk estimates based on time series or on cohort studies,Am J Epidemiol,153,2001,1050-1055.
Lei L.C., Li X.J., Zhang X.W.Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite.Sep. Purif. Technol,5,2008,359-366.
Lidan L.,Jie Z.,Chongpin H.,Zhigang L.,Biaohua C.Adsorptive separation of dimethyl disulfide from liquefied petroleum gas by different zeolites and selectivity study via FT-IR. ,Separation and Purification Technology,Vol125,7 ,2014,247-255.
Ligang L., Andong W., Mathieu D., Meimei D., Yuzhong Z.,Benqiao H, Sulfur removal from fuel using zeolites/polyimide mixed matrix membrane adsorbents, Journal of Hazardous Materials, 2012, 203, 204-212.
Liu D., Gui J., Sun Z.Adsorption structures of heterocyclic nitrogen compounds over Cu(I)Y zeolite: a first principle study on mechanism of the denitrogenation and the effect of nitrogen compounds on adsorptive desulfurization.J. Mol. Catal A: Chem,291,2008,17-21.
Liu X.,Yan Z.,Optimization of nanopores and acidity of USY zeolite by citric modification,Catalysis Today,vol.68,2001,145-154.
Lopes J.M., Serralha F.N., Costa C., Lemos F., Ribeiro F.R.Preparation of HNaY zeolite by ion exchange under microwave treatment. A preliminary study.Catal. Lett,53,1998,103-106.
Magdalena J.,Anna K.,Ewa K.,KarolinaT.,Vladimir G.,Lucjan C.,Kinga G. Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration. Applied Catalysis B: Environmental,Vol167,2015,353-365.
Martins L.,Latorre R.,Saldiva P.,Air pollution and emergency room visits due to chronic lower respiratory diseases in the elderly: an ecological time-series study in Sao Paulo,Brazil,J Occup Environ Med,44,2002,622-627.
Medina M.,Zanobetti A.,Schwartz J.,The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study,Am J Epidemiol,163,2006,579-588.
Modified HUSY Zeolite as an Effective Co-support for NiMo Hydrodesulfurization Catalyst and the Catalyst's High Isomerization Selectivity.Chemistry, Vol 39, 2017,9369-9382.
Moreno-Tost R.,Santamaria-Gonzalez J.,Maireles-Torres P.,Rodriguez-Castellon F., Jimenez-Lopez A.Selective catalytic reduction of NO by ammonia at low temperatures on catalysts based on copper oxide supported on a zirconium-doped mesoporous silica.Catal. Lett,Vol 82,2002,205-212.
Moreira A.M.Brandão H.L.Hackbarth F.V.Maass D. Adsorptive desulfurization of heavy naphthenic oil: Equilibrium and kinetic studies. Chemical Engineering Science.Vol 172,2017,23-31.
Naddafi K., Sadegh Hassanvand M., Yunesian M.Health impact assessment of air pollution in megacity of Tehran, Iran.J. Environ,Health Sci,Eng,9,2012,28.
Nair G., Handbook of Textile and Industrial Dyeing,Processes and Types of Dyes Volume 1, 2011,245-300.
Nair S., Shahadat Hussain A.H.M. The role of surface acidity in adsorption of aromatic sulfur heterocycles from fuels.Fuel,105,2013, 695-704.
Nevers N. D.,Air Pollution Control Engineering.,McGraw-Hill.,2nd ed.,2001.
Niwa M.,Suzuki K.,Isamoto K.,Katada N.,Identification and Measurements of Strong Bronsted Acid Site in USY Zeolite,Journal of Physical Chemistry B, vol.110,2006,264-269.
Nouchi.Responses of whole plants to air pollutions In: Omasa K. Air pollution and plant biotechnology. Tokyo: Springer-Verlag,2002,4-8.
Ogura S.,Shinomiya J.,Tateno Y.,Nara M.,Nomura E.,Kikuchi M.,Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites,Appl. Catal. A Gen,219,2001,33-43.
Ohman L.,Ganemi B.,Björnbom E.,Rahkamaa K.,Keiski R.,Paul J.,Catalyst preparation through ion-exchange of zeolite Cu-, Ni-, Pd-, CuNi- and CuPd-ZSM-5,Materials Chemistry and Physics,vol.73,2002,263-267.
Oumi Y.,Nemoto S.,Nawata S.,Effect of the framework structure on the dealumination-realumination behavior of zeolite,Materials Chemistry and Physics,Vol. 78,2002,551-557.
Palomino J.M., Tran D.T., Kareh A.R.,Miller C.A.,Gardner J.M.,Dong H.Zirconia-silica based mesoporous desulfurization adsorbents.J. Power Sour,278,2015,141-148.
Pereira L.,Loomis D.,Conceicao G.,Association between air pollution and intrauterine mortality in Sao Paulo, Brazil,Environ Health Perspect,106,1998,325-329.
Pinna F.,Supported metal catalysts preparation,Catalysis Today,vol.41,1998,129-137.
Prasad P.S.R and Prasad K.S. Dehydration and rehydration of mesolite: An in situ FTIR study.Microporous and Mesoporous Materials, vol.100,2007,287~294.
Qin J.X., Wang Z.M., Liu X.Q., Li Y.X., Sun L.B.Low-temperature fabrication of Cu(I) sites in zeolites by using a vapor-induced reduction strategy. J. Mater. Chem. A,3,2015,12247-12251
Radhika R.,Jayalatha T.,Rekha K. G.,Salu J.,Rajeev R.,Benny K.G. Adsorption performance of packed bed column for the removal of perchlorate using modified activated carbon. Process Safety and Environmental Protection, Vol 117,2018, 350-362.
Rahila R., Siddiqui M.Review on effects of particulates; sulfur dioxide and nitrogen dioxide on human healthInt,Res,J. Environ,Sci,3,2014,70-73.
Resini C., Montanari T., Nappi L., Bagnasco G., Turco M. , Busca G., Bregani F. , Notaro M., Rocchini G, Selective catalytic reduction of NOx by methane over Co-H-MFI and Co-H-FER zeolite catalysts: characterisation and catalytic activity,J. Catal,214,2003,179.
Ricky M.T.,Adam P.,Elaine B.,Sam M.J. Preinvasive disease of the airway. Cancer Treatment Reviews,Vol 58,2017,77-90.
Rouquerol F.,Rouquerol ., Sing K., Adsorption of powders and porous solids, Academic Press, London, 1999.
Ruthven D.,Principles of adsorption and adsorption process,John Wiley & Sons, Inc. ,New York,1984.
Samoli E.,Analitis A.,Touloumi G.,Estimating the exposure-response relationships between particulate matter and mortality within the APHEA multicity project,Environ Health Perspect,113,2005,88-95.
Sanchez C., Ceron P., Rojas M., Surveillance of acute health effects of air pollution in Mexico city, Epidemiology, 14, 2003, 536-544.
Santos U.,Braga A.,Giorgi D.,Effects of air pollution on blood pressure and heart rate variability: a panel study of vehicular traffic controllers in the city of Sao Paulo, Brazil,Eur Heart J,26,2005,193-200.
Schwensen J.,Johansen J.,Veien N.,Occupational contact dermatitis in hairdressers: an analysis of patch test data from the Danish contact dermatitis group,2002-2011,Contact Dermatitis,70,2014,233-237.
Schwieger W.,Machoke A.G.,Weissenberger T.,Inayat A.,Selvam T.,Klumpp M.,Inayat A.Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity.Chem,Soc. Rev,45,2016,3353-3376.
Sentorun-Shalaby C., Saha S.K.,Ma X., Song C.Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel.Appl. Catal. B Environ,101,2011,718-726.
Setiani O.,Trend of air pollution and its effect on human health in Hiroshima Prefecture–a retrospective study in the cities of Otake, Kure, Mihara, Takehara, Fukuyama and Kaita town,Hiroshima J Med Sci,45,1996,43-50.
Shan J.H.,Liu X.Q.,Sun L.B.,Cui R.Cu–Ce bimetal ion-exchanged Y zeolites for selective adsorption of thiophenic sulfur.Energy & Fuels, 22,2008,3955-3959.
Shen B., Qin Z., Gao X., Lin F., Zhou S., Shen W., Wang B., Zhao H., Liu H., Desilication by alkaline treatment and increasing the silica to alumina ratio of zeolite Y, Chin. J. Catal, 33 (1) , 2012, 152-163.
Stach H.,Lohse U.,Thamm H.,Schirmer W.,Adsorption equilibria of hydrocarbons on highly dealuminated zeolites,Zeolites,vol.6,1986,74-90.
Steven S., Donald J.,Chemical Principles.,2012
Tarach K., K. Gora-Marek., Tekla J., Brylewska K., Datka J., Mlekodaj K., Makowski W., Lgualada Lopez M.C., Martinez Triguero J., Rey F.Catalytic cracking performance of alkaline-treated zeolite beta in the terms of acid sites properties and their accessibility.J. Catal,312,2014,46-57.
Tawfik A., Gaddafi S., Taye D., Nanocomposites and hybrid materials for adsorptive desulfurization, Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering, IGI Global, Hershey, PA, USA ,2016, 129-153.
Thomas J.K., Gunda K., Rehbein P.Flow calorimetry and adsorption study of dibenzothiophene, quinoline and naphthalene over modified Y zeolites.Appl. Catal. B,94,2010,225-233
Tian F. P., Shen Q. C., Fu Z. K.,Wu Y. H.,Jia C. Y. adsorption desulfurization performance over hierarchically structured zeolite Y.Fuel Process. Technol 2014; 128,176-182.
Vanrysselberghe V., Froment G.F., I. T. Horvath (Editor in Chief), Encyclopedia of Catalysis, vol. 3, Wiley-Interscience, Hoboken, 2003, 667-733.
Velu S., Watanabe S., Ma X., Sun L., Song C.,Development of selective adsorbents for removing sulfur from gasoline., Fuel., 2003, 78, 56-57.
Verboekend D.,Vilé G.,Pérez-Ramírez J.Mesopore formation in USY and beta zeolites by base leaching: selection criteria and optimization of pore-directing agents.Cryst. Growth Des.,2012;12,3123-3132
Wang C.J.,Tsai M.Y.,Chi C.C.,Perng T.P.Surface effects on the photoluminescence of Si quantum dots.J. Nanopart Res,11,2009,569.
Wang G., Wen Y., Fan J., Xu C., Gao J.Reactive characteristics and adsorption heat of Ni/ZnO-SiO2-Al2O3adsorbent by reactive adsorption desulfurization,Ind. Eng. Chem. Res., 50,2011,12449-12459.
Wang, C. H., Lin, S. S., Chen, C. L., Weng, H. S.Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydeocarbons, Chemosphere, Vol. 64, 2006, 503-509.
Wei Z., Zeng G., Xie Z., Ma X., Liu H., Achmann X., Sun L., Nair S, Microwave catalytic NOx and SO2 removal using FeCu/zeolite as catalyst, Fuel, 2011, 90, 1599-1603.
Weilun W.,Peng Li.,Ming Z.,Jiashan H.,Feng X.,The Pore Structure of Phosphoaluminate Cement,Open Journal of Composite Materials,vol.2,2012,104-112.
White R.J., Fischer A., Goebel C., Thomas A..A sustainable template for mesoporous zeolite synthesis.J. Am. Chem. Soc,136,2014,2715-2718.
Wu X.,Bai Y. .,Tian Y.,Meng X.,Shi L.Gasoline desulfurization by catalytic alkylation over methanesulfonic acid.Bull. Korean Chem. Soc,34,2013,3055-3058.
Xiang H., Zhang H., Liu P.,Yan Y. Preparation of high purity propane from liquefied petroleum gas in a fixed bed by removal of sulfur and butanes.Chem. Eng. J,284,2016,224-232.
Xiaojuan L.,Dezhi Y.,Yuanyuan C.,Li S.,Xuan M. Adsorption desulfurization and weak competitive behavior from 1-hexene over cesium-exchanged Y zeolites (CsY).Energy Chemistry,Vol.27,2018,271-277 .
Yan Z.,Ma D.,Zhuang J.,Liu X.,Liu X.,Han X.,Bao X.,Chang F.,Xu L.,Liu Z.,On the acid-dealumination of USY zeolite : a solid state NMR investigation,Journal of Molecular Catalysis A :Chemical,vol.194,2003,153-167.
Yang C.,Wang J.,Chan C.,Respiratory and irritant health effects of a population living in a petrochemical-polluted area in Taiwan,Environ Res,74,1997,145-149.
Ying Z., Haji S., Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology, Applied Surface Science, 2014, 30 , 593-601.
Yu N.,Zhang L.,Fan C.,Zhang X.,He M.,Zheng Z.,Removal of organic sulfur compounds from diesel by adsorption on carbon materials,Chem. Eng,31,2015,27-43.
Zaki T.,Mohamed N.,Nessim M.,Salam H.,Characterization and application of nano-alumina sorbents for desulfurization and dearomatization of Suez crude petrolatum,Fuel Process, Technol,106,2013,625-630.
Zallaghi E., Soleimani Z., Heidari-Farsani M., Goudarzi G.Health risks caused by exposure to sulfur dioxide in the ambient air of three main cities of South Western of Iran during 2011 J. Environ Health Eng,4,2015,9.
Zepeda T.A., Pawelec B., Fierro J.L.G., Halachev T.Appl. Catal,71,2007, 223.
Zhao X.,Ma Q.,Lu G.,VOC Removal: Comparison MCM-41 with Hydrophobic Zeolites and Activated Carbon,Energy & Fuels,Vol. 12,1998,1051-1054.
Zheng J.,Zeng Q.,Wang Y.,Ma J.,Qin B., Zhang X.,Sun W., Li R.,The hierarchical effects of zeolite composites in catalysis,Catal Today,168,2011,124-132.
Zhou F.,Hussain F.,Guo Z.,Yanici S.,Cinar Y.Adsorption/desorption characteristics for methane, nitrogen and carbon dioxide of coal samples from Southeast Qinshui Basin, China,Energy Explor. Exploit Vol 31,2013,645-665.
Zhukov Y.M.,Shelyapina M.G.,Zvereva I.A.,Efimov A.Y.,Petranovskii V. Microwave assisted versus convention Cu2+exchange in mordenite. Microporous and Mesoporous Materials,Vol 259,2018,220-228.
方建能,沸石的分類與熱穩定性,臺灣鑛業,第62 卷,第3 期,11-20 ,2008。
行政院環保署,廢潤滑油解除列管應回收廢棄物後續管理及配套措施,2015。
吳嘉文,中孔洞奈米材料之孔洞方向控制及其應用,國立臺灣大學化工系,2009。
吳榮宗,工業觸媒概論,1989。
李文智,以沸石擔持金屬氧化物製備吸附劑以進行磷化氫氣體吸附之研究,國立交通大學環境工程研究所碩士論文,2006。
李華興,張新明,李長洪,張方榮,盧維盛,劉遠金,廣東省天然沸石的特性及其對土壤肥力的影響研究,土壤環境,5 卷,4 期,2002。
林育旨,沸石轉輪吸附材改良與結合冷凝器效能提升研究,國立交通大學環境工程研究所博士論文,2004。
林怡君,液相法製造程序對中孔洞沸石型吸附材特性及其丙酮吸附量影響之研究,國立交通大學環境工程研究所碩士論文,2006。
科學月刊,結晶學百年解密,第539期,2014。
唐扈祥,楊留方,吳興惠,天然沸石及沸石類分子篩,材料導報,18期,2004。
奚旦立,劉秀英,郭安然,環境監測,高 等 教 育 出 版 社,127期,1997。
張白青,固態核磁共振於沸石Y經脫鋁及氟化後之鑑定與其機制探討,國立中央大學化學系研究所碩士論文,2006。
陳養民,王香雅麗,無磷助洗劑δ-層狀二矽酸鈉,應用化工,4 期,2006。
楊博渝,混合型金屬氧化物觸媒應用於焚化二氯甲烷之研究,國立中山大學環境工程研究所碩士論文,1998。
劉鑫,劉福田,張寧,王冬至,沸石負載納米 TiO2光催化劑水處理研究進展,矽酸鹽通報,6 期,2006。
廢潤滑油再生成燃油研究進展,2015。
鄭淑穎,二氧化硫污染對植物影響的研進展,.生態科學,19,59- 64,2000。
賴耿陽,室內空氣污染-解析、預測、對策與人體健康影響,1990。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code