Responsive image
博碩士論文 etd-0620118-162524 詳細資訊
Title page for etd-0620118-162524
論文名稱
Title
以溶膠凝膠法製備氧化鋅外部光萃取薄膜增進有機電激發光二極體效率之研究
Study of sol gel-deposited ZnO external light extraction thin films to enhance the efficiency in organic light-emitting diodes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-16
繳交日期
Date of Submission
2018-07-20
關鍵字
Keywords
氧化鋅薄膜、外部光萃取、有機發光二極體、外部量子效率、溶膠凝膠法
Organic Light-Emitting Diodes, ZnO thin films, Sol-gel, EQE, External light extraction
統計
Statistics
本論文已被瀏覽 5687 次,被下載 0
The thesis/dissertation has been browsed 5687 times, has been downloaded 0 times.
中文摘要
此研究目的主要是以溶膠凝膠法製備氧化鋅薄膜,應用於外部光萃取結構之有機發光二極體,來達到降低元件機板與空氣之間的光學損耗,以提升元件的光萃取效率及外部量子效率(EQE)。
首先我們將氧化鋅溶膠凝膠以不同轉數進行旋轉塗佈,探討其成膜後之差異。之後嘗試不同退火溫度對薄膜之影響,接著量測與探討其光學特性、表面形態、穿透度等特性。
然後將薄膜應用於元件的外部微結構萃取層上,製作出具有外部光萃取結構之藍光OLED元件,最後進行元件的光電特性量測,探討不同退火溫度對藍光OLED元件的光電特性影響。
本實驗結果為利用濃度0.6 M之氧化鋅薄膜製作出具有外部光萃取結構的藍光OLED元件,氧化鋅薄膜在透過不同退火溫度後獲得改善以符合需求,最後成功應用於藍光OLED元件,其外部量子效率(EQE)在亮度為1000cd/m2時的最高增益約43%。
Abstract
In this study, we fabricated organic light-emitting diodes (OLEDs) with external light extraction structure to reduce the Substrate mode loss and increase the EQE by using the Sol–gel-deposited zinc oxide (ZnO) micro structure thin films. And we successfully applied the external light extraction to the organic light-emitting diodes.
First, we use the spin-coating to fabricate the ZnO thin film for forming various thickness by using different spin rate. We investigated surface morphology and transmittance of the ZnO thin film.
Then, we anneal different temperature and also different ways to raise the annealing temperature. We investigated surface morphology and optical characteristics of the ZnO thin film, and we improve the ZnO thin film to match the condition of external light extraction structure.
Finally, we successfully fabricated blue OLEDs with the Sol–gel-deposited ZnO light extraction thin films. Significantly, the blue OLEDs with external light extraction structure have great light extraction efficiency which increase the external quantum efficiency (EQE) by 43% compared to standard OLEDs at 1000cd/m2.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 有機發光二極體的歷史進展 2
1-3 OLED元件的結構介紹 3
1-3-1 雙層A型 3
1-3-2 雙層B型 4
1-3-3 雙層B型元件結構三層A型 5
1-3-4 三層B型 5
1-4 OLED元件的基本發光原理 6
1-4-1 有機與無機發光機制比較 6
1-4-2 有機發光二極體基礎理論 8
1-4-3 能量轉換機制 10
1-5 有機電激發光元件材料介紹 12
1-5-1 陽極 13
1-5-2 電洞注入層 13
1-5-3 電洞傳輸層 14
1-5-4 發光層 15
1-5-5 電子傳輸層 16
1-5-6 電子注入層 16
1-5-7 陰極 17
1-6 摻雜技術 17
1-7 濃度淬息效應 18
1-8 三重態自我毀滅現象 19
1-9 OLED發光效率定義 20
1-10 OLED光色鑑定 22
1-11 OLED光學損耗因素 24
1-12 研究動機 25
1-13 文獻回顧 26
第二章 實驗方法與流程 28
2-1 實驗架構 28
2-2 實驗材料 29
2-3 實驗設備 31
2-3-1 製程設備 31
2-3-2 量測設備 34
2-4 有機發光二極體實驗步驟 39
2-4-1 溶膠凝膠氧化鋅配製及成膜 40
2-4-2 有機薄膜與金屬薄膜蒸鍍製程 41
2-4-3 OLED元件之封裝製程 44
2-4-4 OLED元件之量測 44
第三章 結果與討論 45
3-1 不同轉速對氧化鋅薄膜之影響 45
3-1-1 薄膜穿透率分析 45
3-1-2 薄膜表面形態分析 46
3-1-3 具有微結構之元件數據分析 47
3-1-4 小結 52
3-2 不同退火溫度對氧化鋅薄膜之影響 52
3-2-1 薄膜表面形態分析 52
3-2-2 薄膜光學特性分析 54
3-2-3 具有微結構之元件數據分析 55
3-2-4 小結 59
3-3 不同退火方式對氧化鋅薄膜之影響 59
3-3-1 薄膜表面形態分析 59
3-3-2 薄膜光學特性分析 61
3-3-3 具有微結構之元件數據分析 62
3-3-4 小結 66
第四章 總結 67
參考文獻 68
參考文獻 References
[1] Pope, M., Kallmann, H. P., & Magnante, P. (1963). Electroluminescence in organic crystals. The Journal of Chemical Physics, 38(8), 2042-2043.
[2] Tang, C. W., & VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied physics letters, 51(12), 913-915.
[3] Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., ... & Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347(6293), 539-541.
[4] Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2008). Solution-processed metal nanowire mesh transparent electrodes. Nano letters, 8(2), 689-692.
[5] Adachi, C., Tokito, S., Tsutsui, T., & Saito, S. (1988). Organic electroluminescent device with a three-layer structure. Japanese journal of applied physics, 27(4A), L713.
[6] Era, M., Adachi, C., Tsutsui, T., & Saito, S. (1991). Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical physics letters, 178(5-6), 488-490.
[7] Kido, J., Kohda, M., Okuyama, K., & Nagai, K. (1992). Organic electroluminescent devices based on molecularly doped polymers. Applied physics letters, 61(7), 761-763.
[8] Kido, J., Kimura, M., & Nagai, K. (1995). Multilayer white light-emitting organic electroluminescent device. Science-new york then washington-, 1332-1332.
[9] Kido, J., Shionoya, H., & Nagai, K. (1995). Single‐layer white light‐emitting organic electroluminescent devices based on dye‐dispersed poly (N‐vinylcarbazole). Applied physics letters, 67(16), 2281-2283.
[10] Kafafi, Z. H. (Ed.). (2005). Organic electroluminescence. Crc press.
[11] Sze, S. M. (2008). Semiconductor devices: physics and technology. John Wiley & Sons.
[12] Miyata, S. (1997). Organic electroluminescent materials and devices. Crc press.
[13] Sugiyama, K., Yoshimura, D., Miyamae, T., Miyazaki, T., Ishii, H., Ouchi, Y., & Seki, K. (1998). Electronic structures of organic molecular materials for organic electroluminescent devices studied by ultraviolet photoemission spectroscopy. Journal of applied physics, 83(9), 4928-4938.
[14] Chen, X. W., Choy, W. C., Liang, C. J., Wai, P. K. A., & He, S. (2007). Modifications of the exciton lifetime and internal quantum efficiency for organic light-emitting devices with a weak/strong microcavity. Applied physics letters, 91(22), 221112.
[15] Tang, C. W., VanSlyke, S. A., & Chen, C. H. (1989). Electroluminescence of doped organic thin films. Journal of applied physics, 65(9), 3610-3616.
[16] 陳金鑫, & 黃孝文. (2005). OLED: 有機電激發光材料與元件. 五南圖書出版股份有限公司.
[17] Förster, T. (1948). Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der physik, 437(1‐2), 55-75.
[18] Dexter, D. L. (1953). A theory of sensitized luminescence in solids. The journal of chemical physics, 21(5), 836-850.
[19] Miyata, S. (1997). Organic electroluminescent materials and devices. Crc press.
[20] Van Slyke, S. A., Chen, C. H., & Tang, C. W. (1996). Organic electroluminescent devices with improved stability. Applied physics letters, 69(15), 2160-2162.
[21] Mashford, B. S., Stevenson, M., Popovic, Z., Hamilton, C., Zhou, Z., Breen, C., ... & Kazlas, P. T. (2013). High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nature photonics, 7(5), 407-412.
[22] Sasabe, H., Nakanishi, H., Watanabe, Y., Yano, S., Hirasawa, M., Pu, Y. J., & Kido, J. (2013). Extremely Low Operating Voltage Green Phosphorescent Organic Light‐Emitting Devices. Advanced functional materials, 23(44), 5550-5555.
[23] Jeon, W. S., Park, J. S., Li, L., Lim, D. C., Son, Y. H., Suh, M. C., & Kwon, J. H. (2012). High current conduction with high mobility by non-radiative charge recombination interfaces in organic semiconductor devices. Organic electronics, 13(6), 939-944.
[24] Cho, S. H., Pyo, S. W., & Suh, M. C. (2012). Low voltage top-emitting organic light emitting devices by using 1, 4, 5, 8, 9, 11-hexaazatriphenylene-hexacarbonitrile. Synthetic metals, 162(3), 402-405.
[25] Van Slyke, S. A., Chen, C. H., & Tang, C. W. (1996). Organic electroluminescent devices with improved stability. Applied physics letters, 69(15), 2160-2162.
[26] Stolka, M., Yanus, J. F., & Pai, D. M. (1984). Hole transport in solid solutions of a diamine in polycarbonate. The journal of physical chemistry, 88(20), 4707-4714.
[27] Shoustikov, A. A., You, Y., & Thompson, M. E. (1998). Electroluminescence color tuning by dye doping in organic light-emitting diodes. IEEE journal of selected topics in quantum electronics, 4(1), 3-13.
[28] Baldo, M. A., Adachi, C., & Forrest, S. R. (2000). Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical review b, 62(16), 10967.
[29] Sun, Y., & Forrest, S. R. (2007). High-efficiency white organic light emitting devices with three separate phosphorescent emission layers. Applied physics letters, 91(26), 263503.
[30] 顧鴻壽. (2001). 光電有機電激發光顯示器技術及應用. 新文京開發.
[31] Oh, J. Y., Kim, J. H., Seo, Y. K., Joo, C. W., Lee, J., Lee, J. I., ... & Kim, Y. H. (2017). Down-conversion light outcoupling films using imprinted microlens arrays for white organic light-emitting diodes. Dyes and Pigments, 136, 92-96.
[32] Ding, L., Wang, L. W., Zhou, L., & Zhang, F. H. (2016). Out-coupling membrane for large-size organic light-emitting panels with high efficiency and improved uniformity. Applied Surface Science, 389, 990-994.
[33] Xu, Z., Li, M., Xu, M., Zou, J., Tao, H., Wang, L., & Peng, J. (2017). Light extraction of flexible OLEDs based on transparent polyimide substrates with 3-D photonic structure. Organic Electronics, 44, 225-231.
[34] Fleetham, T., Ecton, J., Li, G., & Li, J. (2016). Improved out-coupling efficiency from a green microcavity OLED with a narrow band emission source. Organic Electronics, 37, 141-147.
[35] Suh, M. C., Pyo, B., Lim, B. W., & Kim, N. S. (2016). Preparation of randomly distributed micro-lens arrays fabricated from porous polymer film and their application as a light extraction component. Organic Electronics, 38, 316-322.
[36] Seelig, E. W., Tang, B., Yamilov, A., Cao, H., & Chang, R. P. (2003). Self-assembled 3D photonic crystals from ZnO colloidal spheres. Materials Chemistry and Physics, 80(1), 257-263.
[37] 黃智國. (2016) “可撓曲式電極與光萃取結構應用於有機電激發光二極體之研究” 中山大學博士論文.
[38] 洪培元. (2016) “以內部光萃取結構增進有機電激發光二極體效率之研究” 中山大學碩士論文.
[39] 蘇衍誠. (2016) “以溶膠凝膠法製備氧化鋅光萃取薄膜增進有機電激發光二極體效率之研究” 中山大學碩士論文.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.224.0.25
論文開放下載的時間是 校外不公開

Your IP address is 18.224.0.25
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code