Responsive image
博碩士論文 etd-0620118-164905 詳細資訊
Title page for etd-0620118-164905
論文名稱
Title
藉由矽膠轉印之方式製做奈米銀線複合式電極應用於有機發光二極體之研究
By Using Dimethicone Transferred Solution Produce Silver Nanowires Electrodes Apply in Organic Light-Emitting Diode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-16
繳交日期
Date of Submission
2018-07-20
關鍵字
Keywords
有機發光二極體、聚二甲基矽氧烷、奈米銀線、極性溶劑二甲基亞碸、複合式電極
Compound Electrodes, Dimethyl Sulfoxide, Organic Light Emitting Diodes, PDMS, Silver Nanowires
統計
Statistics
本論文已被瀏覽 5648 次,被下載 0
The thesis/dissertation has been browsed 5648 times, has been downloaded 0 times.
中文摘要
本研究在製作奈米銀線複合式電極,以奈米銀線與PEDOT:PSS (PH1000)所組成的「複合式導電薄膜」應用於有機光電元件,以取代透明氧化銦錫(Indium Tin Oxide, ITO)電極,未來更可以此發展製作可撓式有機光電元件。研究中使用透明矽膠「聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)」疏水性及親水性的特性及極性溶劑「二甲基亞碸(Dimethyl Sulfoxide, DMSO)」對奈米銀線複合式電極溶液薄膜進行處理,最後製做有機發光二極體。
使用固定濃度之奈米銀線(Silver Nanowires, AgNWs)水溶液參雜PEDOT:PSS (PH1000)來配製不同濃度之奈米銀線複合式電極溶液,探討單層與堆疊多層形成薄膜後之差異以及薄膜面電阻、薄膜穿透度、薄膜表面型態與粗糙及使用PDMS固化成薄膜,且探討氧電漿處理時間與PDMS表面親水性之關係。在本研究發現當氧電漿處理時間為60分鐘時,PDMS薄膜在金屬遮罩定義的電極範圍能完全呈現親水性的狀態且當體積比奈米銀線酒精混合溶液:PEDOT:PSS (PH1000)為1:19時,奈米銀線複合式電極有最好的表現,面電阻為108 Ω/sq,可見光波段平均穿透度為83%,表面粗糙度RMS小於10 nm。
當我們利用此PDMS轉印方法備製的AgNWs製做成有機發光二極體(Organic Light Emitting Diodes,簡稱OLED)元件後,可以發現此元件發光穩定,不會有閃爍的情形發生,解決了實驗室以往AgNWs電極嚴重漏電的問題。
Abstract
In this study, we produce the compound silver nanowires electrodes with silver nanowires and PEDOT:PSS (PH1000). The electrodes would apply in organic light emitting diode (OLED), and look forward to replace indium tin oxide (ITO). In the future, the hybrid film could be used to manufacture the flexible organic electro-optic devices.
To enhance the conductivity of the compound electrodes, we use dimethyl sulfoxide (DMSO) to treat the solvent of compound silver nanowires electrodes by soaking method. Also, to reduce the roughness of the compound electrodes, we utilize PDMS to solve the roughness of compound silver nanowires electrodes via transferred method. At last, we could use the thin film electrodes to produce OLED.
In this research, we investigated the sheet resistance of compound electrodes, optical transmittance, surface roughness and surface morphology. Then, we found that there is the best hydrophilicity at PDMS film by ozone treatment sixty minutes. In this experiment, the appropriates volume ratio of silver nanowires aqueous solution, and PEDOT:PSS (PH1000) is 1:19 . The thin film produced by this solvent get great performance, sheet resistance 108 (Ω/sq), keeping the average transmittance achieve 83 % in the wavelength of visible light, and the surface RMS is lower than 10 nm.
Via measurement results of organic electro-optic devices, we found that even though the surface RMS of compound silver nanowires electrodes is about 1.8 nm, the problem of leakage is still existence. Consequently, the process of compound silver nanowires electrodes is not only care about the conductivity and optical transmittance, but also have to solve the problem of leakage on account of the silver nanowires overlap.
目次 Table of Contents
中文審定書 i
英文審定書 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1-1現代顯示器 1
1-1-1 OLED簡介 2
1-2奈米銀線 4
1-2-1奈米銀線簡介 4
1-2-2 奈米銀線應用 5
第二章 理論基礎 6
2-1 OLED元件結構 6
2-1-1雙層A型(Double Layer-A) 6
2-1-2雙層B型(Double Layer-B) 7
2-1-3三層A型(Three Layer-A) 8
2-1-4三層B型(Three Layer-B) 8
2-2 OLED理論基礎 10
2-2-1螢光及磷光 10
2-2-2能量轉移 11
2-2-3濃度淬熄效應 15
2-2-4光色定義 18
2-3 OLED元件基本發光原理 21
2-4 OLED效率定義 23
2-5 PEDOT:PSS導電機制 25
2-5-1 氫離子摻雜 26
2-5-2極性作用力 27
2-6 PDMS疏水性轉變親水性機制 28
第三章 實驗 29
3-1實驗動機 29
3-2實驗架構 30
3-3實驗材料 32
3-4製程設備 36
3-4-1超音波清洗機(Ultrasonic cleaning) 36
3-4-2旋轉塗佈機(Spin coater) 37
3-4-3紫外光曝光機(UV exposure) 37
3-4-4氧電漿清洗機(O2 -plasma) 38
3-4-5手套箱(Glove Box) 39
3-4-6蒸鍍機(Evaporator) 40
3-4-7反應式離子蝕刻機Reactive Ion Etching(RIE) 41
3-5量測分析 42
3-5-1四點探針(Four-point-probe) 42
3-5-2表面輪廓儀(Surface profiler) 42
3-5-3光電子光譜分析儀(Photo-Electron Spectroscopy in Air) 44
3-5-4紫外光-可見光光譜儀(UV-Visible spectrometer) 45
3-5-5原子力掃描探針顯微鏡(Atomic Force Microscopy) 46
3-5-6有機電激發光元件光電特性量測系統 48
3-6藥品配製 49
3-6-1奈米銀線水溶液材料 49
3-6-2奈米銀線複合式電極溶液,浸泡處理 49
3-6-3聚二甲基矽氧烷 50
3-7實驗步驟 51
3-7-1奈米銀線複合式電極薄膜製備及分析 51
3-7-2 ITO基板圖形化 53
3-7-3奈米銀線複合式電極之有機發光二極體陽極圖形化 54
3-7-4 奈米銀線複合式電極為陽極之OLED元件製程 55
3-7-5 ITO為陽極之OLED元件製程 56
第四章 結果與討論 57
4-1奈米銀線複合式電極薄膜特性分析 57
4-1-1 DMSO薄膜後處理 57
4-2 極性溶劑DMSO於後處理手法對於薄膜之影響 61
4-2-1極性溶劑DMSO後處理之影響 61
4-2-2有機光電元件之奈米銀線複合式電極溶液選擇 63
4-3 電漿處理PDMS對薄膜成膜之影響 65
4-4有機發光二極體元件光電特性分析 68
第五章 總結 72
參考文獻 73
參考文獻 References
[1] Cooper, J. S., & Fava, J. A. (2006). Life‐Cycle assessment practitioner survey: Summary of results. Journal of industrial ecology, 10(4), 12-14.
[2] Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied physics letters, 48(2), 183-185.
[3] Adachi, C., Tokito, S., Tsutsui, T., & Saito, S. (1988). Organic electroluminescent device with a three-layer structure. Japanese journal of applied physics, 27(4A), L713.
[4] Era, M., Adachi, C., Tsutsui, T., & Saito, S. (1991). Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical physics letters, 178(5-6), 488-490.
[5] Kido, J., Kohda, M., Okuyama, K., & Nagai, K. (1992). Organic electroluminescent devices based on molecularly doped polymers. Applied physics letters, 61(7), 761-763.
[6] Kido, J., Kimura, M., & Nagai, K. (1995). Multilayer white light-emitting organic electroluminescent device. Science-new york then washington, 1332-1332.
[7] Kido, J., Shionoya, H., & Nagai, K. (1995). Single‐layer white light‐emitting organic electroluminescent devices based on dye‐dispersed poly (N‐vinylcarbazole). Applied physics letters, 67(16), 2281-2283.
[8] Shoustikov, A. A., You, Y., & Thompson, M. E. (1998). Electroluminescence color tuning by dye doping in organic light-emitting diodes. IEEE journal of selected topics in quantum electronics, 4(1), 3-13.
[9] Kallmann, H., & Pope, M. (1959). Photovoltaic effect in organic crystals. The journal of chemical physics, 30(2), 585-586.
[10] Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270(5243), 1789.
[11] Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., & Yang, Y. (2005). High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature materials, 4(11), 864-868.
[12] Ma, W., Yang, C., Gong, X., Lee, K., & Heeger, A. J. (2005). Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced functional materials, 15(10), 1617-1622.
[13] Green, M. A. (1982). Solar cells: operating principles, technology, and system applications.
[14] 莊嘉深. (1997). 太陽能工程-太陽電池篇, 全華圖書.
[15] 林耀文. (2015). 以極性非質子溶劑透過摻雜及熱處理提升 PEDOT: PSS 導電性應用於有機發光二極體之研究. 中山大學光電工程研究所學位論文, 1-94.
[16] Ouyang, J., Xu, Q., Chu, C. W., Yang, Y., Li, G., & Shinar, J. (2004). On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer, 45(25), 8443-8450.
[17] Noh, H. Y., Park, C. S., Park, J. S., Kang, S. W., & Kim, H. R. (2012). Transfer printing method to obtain polarized light emission in organic light-emitting device. Japanese Journal of Applied Physics, 51(6S), 06FJ03.
[18] 龔宇睿, & 呂奇明. (2014). 電致變色材料發展趨勢. 工業材料雜誌, 光電特刊, (330), 120-129.
[19] Xia, Y., Sun, K., & Ouyang, J. (2012). Solution‐processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Advanced materials, 24(18), 2436-2440.
[20] Service, R. F. (2003). Technology. Electronic textiles charge ahead. Science, 301(5635), 909.

[21] Aad, G., Abat, E., Abbott, B., Abdallah, J., Abdelalim, A. A., Abdesselam, A., ... & Abreu, H. (2010). Charged-particle multiplicities in pp interactions at measured with the ATLAS detector at the LHC. Physics letters B, 688(1), 21-42.
[22] Ko, H. C., Stoykovich, M. P., Song, J., Malyarchuk, V., Choi, W. M., Yu, C. J., ... & Rogers, J. A. (2008). A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 454(7205), 748-753.
[23] Na, S. I., Kim, S. S., Jo, J., & Kim, D. Y. (2008). Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Advanced materials, 20(21), 4061-4067.
[24] Andersson, A., Johansson, N., Broms, P., Yu, N., Lupo, D., & Salaneck, W. R. (1998). Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Advanced materials, 10(11), 859-863.
[25] Liu, S., Ho, S., & So, F. (2016). Novel Patterning Method for Silver Nanowire Electrodes for Thermal-Evaporated Organic Light Emitting Diodes. ACS applied materials & interfaces, 8(14), 9268-9274.
[26] Ouyang, L., Musumeci, C., Jafari, M. J., Ederth, T., & Inganäs, O. (2015). Imaging the phase separation between PEDOT and polyelectrolytes during processing of highly conductive PEDOT: PSS films. ACS applied materials & interfaces, 7(35), 19764-19773.
[27] Haacke, G. (1976). New figure of merit for transparent conductors. Journal of applied physics, 47(9), 4086-4089.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.100.120
論文開放下載的時間是 校外不公開

Your IP address is 3.141.100.120
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code