Responsive image
博碩士論文 etd-0620118-184909 詳細資訊
Title page for etd-0620118-184909
論文名稱
Title
二硫化鉬型態對牛胰島素纖維化調控抑制之影響
Impact of the Morphology of Molybdenum Disulfide on Inhibition of Bovine Insulin Fibrillation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-17
繳交日期
Date of Submission
2018-07-22
關鍵字
Keywords
二硫化鉬、牛胰島素、尺寸、奈米片
bovine insulin, size, nanosheets, molybdenum disulfide
統計
Statistics
本論文已被瀏覽 5629 次,被下載 1
The thesis/dissertation has been browsed 5629 times, has been downloaded 1 times.
中文摘要
MoS2 奈米片( MoS2 NSs )在過去的論文中已被證明具有各種優勢:易於被攝入細胞,可以進行表面修飾官能基和低細胞毒性,高降解性(體內)。在最近的研究中,為了增加 MoS2 奈米片在水中的分散度,用來作為分散體的分子已經從商業界面活性劑發展到適合生物體的溶菌酶、牛血清白蛋白、絲素蛋白等等。這種現象說明了 MoS2 奈米片與生物體中的胜肽分子具有一定強度的親和力吸附關係。
澱粉樣蛋白疾病:包括阿茲海默、帕金森氏和第二型糖尿病各自具有與其病理學相關的特異性致澱粉樣蛋白生成肽或蛋白質。這些肽中的每一種的纖維化涉及複雜的多步驟過程,從單體形式轉變為可溶性寡聚體和原細纖維或澱粉樣蛋白晶種,直到最終形成大的疏水性成熟原纖維。目前的研究支持低分子量可溶性低聚物,乃是作為聚集途徑中的中間物種,最終形成澱粉樣蛋白介導細胞死亡的主要貢獻者。因此近年來使用小分子藥物與奈米材料調控抑制澱粉樣蛋白的研究蓬勃發展。綜合前段所述,本實驗對於MoS2 奈米片與胜肽分子的吸附現象進行了關於兩者間親和力與調控牛胰島素聚集的一系列研究。MoS2奈米片與蛋白質序列中不同氨基酸的表面親和力的理論計算,得知其表面帶有負電而疏水的特性有利於吸附帶正電而具有疏水性質的氨基酸。而不同大小的MoS2奈米片在不同超聲振盪時間下製備,並且在抑制牛胰島素聚集的實驗中選擇了最佳尺寸。最終得出 MoS2 奈米片有助於減少牛胰島素纖維的形成及降低其所產生之溶血效應的結論後,將擴大 MoS2 奈米片材料在生物化學領域的應用價值。
Abstract
MoS2 nanosheets (MoS2 NSs) have been shown in past publication having various advantages: easily uptake by cells, surface modification of functional groups and low cytotoxicity, with high degradability (in vivo). In recent studies, in order to increase the dispersion of MoS2 nanosheets in water, the molecules used as dispersions have evolved from commercial surfactants to biomolecules, such as lysozymes, bovine serum albumin, silk fibroin, etc., which are suitable for organisms. This phenomenon shows that the MoS2 nanosheets have a strong affinity for the peptide molecules in vivo.
Amyloid diseases: including Alzheimer's, Parkinson's and type 2 diabetes each have their own pathologies associated with specific amyloidogenic peptides or proteins. The fibrosis of each of these peptides involves complex multi-steps. The process changes from monomeric form to soluble oligomers and fibril or amyloid seed until eventually large hydrophobic mature fibrils are formed. Current research supports low molecular weight soluble oligomers as an intermediate species in the aggregation pathway that ultimately contributes to amyloid-mediated cell death. Therefore, many studies using small molecule drugs or nanomaterials to control amyloid inhibition have flourished. As described in the previous paragraph, this study performed a series of studies on the affinity between molybdenum disulfide nanosheets and bovine insulin, and the regulation of bovine insulin aggregation. The theoretical calculation of affinity shows that the negatively charged and hydrophobic nature of MoS2 nanosheets surface facilitates the adsorption of positively charged and hydrophobic amino acids. Different sizes of molybdenum disulfide nanoparticles were prepared at different ultrasonic oscillation times, and the best size was selected in experiments that inhibit bovine insulin aggregation.
Finally, it is concluded that the MoS2 nanosheets help to reduce the formation of bovine insulin fibers and reduce the resulting hemolytic effects, will expand the application value of MoS2 nanosheets in biochemistry.
目次 Table of Contents
[摘要+i]
[Abstract+ii]
[目錄+iv]
[圖次+vi]
[表次+vii]
[二硫化鉬型態對牛胰島素纖維調控抑製的影響+1]
[一、前言 +1]
[二、實驗步驟+5]
[2-1 藥品與溶液配置+5]
[2-2 儀器設備+7]
[2-3 合成二硫化鉬奈米片+8]
[2-4 合成檸檬酸碳量子點+9]
[2-5 金奈米粒子的製備+9]
[2-6 銀奈米粒子的製備+9]
[2-7 MoS2奈米粒子的製備+10]
[2-8 以二硫化鉬奈米片作為牛胰島素之抗聚集試劑 +10]
[2-9 以衍生化方法計算氨基酸與二硫化鉬之結合常數+11]
[2-10 溶血測試+11]
[三、結果與討論+13]
[3-1 二硫化鉬奈米片之合成與鑑定+13]
[3-2以二硫化鉬奈米片調控牛胰島素纖維化+19]
[3-3 探討牛胰島素反應時間對其纖維化的影響+25]
[3-4 探討pH值對二硫化鉬調控牛胰島素纖維化的影響+25]
[3-5 比較不同材料調控牛胰島素纖維化與機制探討+28]
[3-6 拉曼光譜分析牛胰島素 – 二硫化鉬奈米片的吸附結構+31]
[3-6 探討二硫化鉬對氨基酸單體的吸附親和力+34]
[3-7 牛胰島素纖維溶血測試+37]
[四、結論+39]
參考文獻 References
1. Yankner, B. A.; Lu, T., Amyloid β-protein toxicity and the pathogenesis of Alzheimer disease. J. Biol. Chem. 2009, 284, 4755-4759.
2. Greenwald, J.; Riek, R., Biology of amyloid: structure, function, and regulation. Structure 2010, 18, 1244-1260.
3. Wang, B.; Pilkington, E. H.; Sun, Y.; Davis, T. P.; Ke, P. C.; Ding, F., Modulating protein amyloid aggregation with nanomaterials. Environmental Science: Nano 2017, 4, 1772-1783.
4. Chiti, F.; Dobson, C. M., Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333-366.
5. Wang, C.; Yang, A.; Li, X.; Li, D.; Zhang, M.; Du, H.; Li, C.; Guo, Y.; Mao, X.; Dong, M., Observation of molecular inhibition and binding structures of amyloid peptides. Nanoscale 2012, 4, 1895-1909.
6. Aileen Funke, S.; Willbold, D., Peptides for therapy and diagnosis of Alzheimer's disease. Curr. Pharm. Des. 2012, 18, 755-767.
7. Wang, S. S.-S.; Chen, Y.-T.; Chou, S.-W., Inhibition of amyloid fibril formation of β-amyloid peptides via the amphiphilic surfactants. BBA-MOL BASIS DIS 2005, 1741, 307-313.
8. Cristóvão, J. S.; Santos, R.; Gomes, C. M., Metals and neuronal metal binding proteins implicated in Alzheimer’s disease. Oxid. Med. Cell. Longev. 2016, 2016.
9. Porat, Y.; Abramowitz, A.; Gazit, E., Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 2006, 67, 27-37.
10. Song, Y.; Moore, E. G.; Guo, Y.; Moore, J. S., Polymer–Peptide Conjugates Disassemble Amyloid β Fibrils in a Molecular-Weight Dependent Manner. J. Am. Chem. Soc. 2017, 139, 4298-4301.
11. Mahmoudi, M.; Quinlan-Pluck, F.; Monopoli, M. P.; Sheibani, S.; Vali, H.; Dawson, K. A.; Lynch, I., Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution. ACS Chem. Neurosci. 2013, 4, 475-485.
12. Klajnert, B.; Cortijo-Arellano, M.; Bryszewska, M.; Cladera, J., Influence of heparin and dendrimers on the aggregation of two amyloid peptides related to Alzheimer’s and prion diseases. Biochem. Biophys. Res. Commun. 2006, 339, 577-582.
13. Cabaleiro-Lago, C.; Szczepankiewicz, O.; Linse, S., The effect of nanoparticles on amyloid aggregation depends on the protein stability and intrinsic aggregation rate. Langmuir 2012, 28, 1852-1857.
14. Kim, J. E.; Lee, M., Fullerene inhibits β-amyloid peptide aggregation. Biochem. Biophys. Res. Commun. 2003, 303, 576-579.
15. Lee, C.-M.; Huang, S.-T.; Huang, S.-H.; Lin, H.-W.; Tsai, H.-P.; Wu, J.-Y.; Lin, C.-M.; Chen, C.-T., C60 fullerene-pentoxifylline dyad nanoparticles enhance autophagy to avoid cytotoxic effects caused by the β-amyloid peptide. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 107-114.
16. Li, M.; Yang, X.; Ren, J.; Qu, K.; Qu, X., Using Graphene Oxide High Near‐Infrared Absorbance for Photothermal Treatment of Alzheimer's Disease. Adv. Mater. 2012, 24, 1722-1728.
17. Choi, I.; Lee, L. P., Rapid detection of Aβ aggregation and inhibition by dual functions of gold nanoplasmic particles: Catalytic activator and optical reporter. ACS nano 2013, 7, 6268-6277.
18. Marek, P. J.; Patsalo, V.; Green, D. F.; Raleigh, D. P., Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects. Biochemistry 2012, 51, 8478-8490.
19. Monopoli, M. P.; Åberg, C.; Salvati, A.; Dawson, K. A., Biomolecular coronas provide the biological identity of nanosized materials. Nature nanotechnology 2012, 7, 779.
20. Mahmoudi, M.; Monopoli, M. P.; Rezaei, M.; Lynch, I.; Bertoli, F.; McManus, J. J.; Dawson, K. A., The protein corona mediates the impact of nanomaterials and slows amyloid beta fibrillation. ChemBioChem 2013, 14, 568-572.
21. Fei, L.; Perrett, S., Effect of nanoparticles on protein folding and fibrillogenesis. Int. J. Mol. Sci. 2009, 10, 646-655.
22. Wu, X.; Narsimhan, G., Effect of surface concentration on secondary and tertiary conformational changes of lysozyme adsorbed on silica nanoparticles. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2008, 1784, 1694-1701.
23. Han, Q.; Cai, S.; Yang, L.; Wang, X.; Qi, C.; Yang, R.; Wang, C., Molybdenum Disulfide Nanoparticles as Multifunctional Inhibitors against Alzheimer’s Disease. ACS applied materials & interfaces 2017, 9, 21116-21123.
24. Zhou, L.; He, B.; Yang, Y.; He, Y., Facile approach to surface functionalized MoS 2 nanosheets. RSC Advances 2014, 4, 32570-32578.
25. Wang, J.; Liu, L.; Ge, D.; Zhang, H.; Feng, Y.; Zhang, Y.; Chen, M.; Dong, M., Differential Modulating Effect of MoS2 on Amyloid Peptide Assemblies. Chemistry–A European Journal 2018, 24, 3397-3402.
26. Nilsson, M. R., Techniques to study amyloid fibril formation in vitro. Methods 2004, 34, 151-160.
27. Hawe, A.; Sutter, M.; Jiskoot, W., Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res. 2008, 25, 1487-1499.
28. Xu, S.; Li, D.; Wu, P., One‐pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2015, 25, 1127-1136.
29. Zhao, W.; Chiuman, W.; Lam, J. C.; McManus, S. A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M. A.; Li, Y., DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J. Am. Chem. Soc. 2008, 130, 3610-3618.
30. Wei, H.; Chen, C.; Han, B.; Wang, E., Enzyme colorimetric assay using unmodified silver nanoparticles. Anal. Chem. 2008, 80, 7051-7055.
31. Kanjanawarut, R.; Su, X., Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal. Chem. 2009, 81, 6122-6129.
32. Chen, S. C.; Lin, C. Y.; Cheng, T. L.; Tseng, W. L., 6‐Mercaptopurine‐Induced Fluorescence Quenching of Monolayer MoS2 Nanodots: Applications to Glutathione Sensing, Cellular Imaging, and Glutathione‐Stimulated Drug Delivery. Adv. Funct. Mater. 2017, 27, 1702452.
33. Gaur, A. P.; Sahoo, S.; Ahmadi, M.; Dash, S. P.; Guinel, M. J.-F.; Katiyar, R. S., Surface energy engineering for tunable wettability through controlled synthesis of MoS2. Nano Lett. 2014, 14, 4314-4321.
34. Wang, Y.; Wang, S.; Li, C.; Qian, M.; Bu, J.; Wang, J.; Huang, R., Facile growth of well-dispersed and ultra-small MoS 2 nanodots in ordered mesoporous silica nanoparticles. Chem. Commun. 2016, 52, 10217-10220.
35. Bolder, S. G.; Sagis, L. M.; Venema, P.; van der Linden, E., Thioflavin T and birefringence assays to determine the conversion of proteins into fibrils. Langmuir 2007, 23, 4144-4147.
36. LEVINE III, H., Solution {beta}-amyloid peptides: detection of amyloid aggregation in thioflavine T interaction with synthetic Alzheimer's disease. Protein Sci. 1993, 2, 404-410.
37. Krebs, M. R.; Bromley, E. H.; Donald, A. M., The binding of thioflavin-T to amyloid fibrils: localisation and implications. J. Struct. Biol. 2005, 149 (1), 30-37.
38. Biancalana, M.; Makabe, K.; Koide, A.; Koide, S., Molecular mechanism of thioflavin-T binding to the surface of β-rich peptide self-assemblies. J. Mol. Biol. 2009, 385, 1052-1063.
39. Stsiapura, V. I.; Maskevich, A. A.; Kuzmitsky, V. A.; Turoverov, K. K.; Kuznetsova, I. M., Computational study of thioflavin T torsional relaxation in the excited state. The Journal of Physical Chemistry A 2007, 111, 4829-4835.
40. Laurent, S.; Ejtehadi, M. R.; Rezaei, M.; Kehoe, P. G.; Mahmoudi, M., Interdisciplinary challenges and promising theranostic effects of nanoscience in Alzheimer's disease. RSC Advances 2012, 2, 5008-5033.
41. Bellova, A.; Bystrenova, E.; Koneracka, M.; Kopcansky, P.; Valle, F.; Tomasovicova, N.; Timko, M.; Bagelova, J.; Biscarini, F.; Gazova, Z., Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology 2010, 21, 065103.
42. Sikkink, L. A.; Ramirez-Alvarado, M., Salts enhance both protein stability and amyloid formation of an immunoglobulin light chain. Biophys. Chem. 2008, 135, 25-31.
43. Zhang, M.; Mao, X.; Yu, Y.; Wang, C. X.; Yang, Y. L.; Wang, C., Nanomaterials for reducing amyloid cytotoxicity. Adv. Mater. 2013, 25, 3780-3801.
44. Mangialardo, S.; Piccirilli, F.; Perucchi, A.; Dore, P.; Postorino, P., Raman analysis of insulin denaturation induced by high‐pressure and thermal treatments. J. Raman Spectrosc. 2012, 43, 692-700.
45. McGhee, J. D.; von Hippel, P. H., Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 1974, 86, 469-489.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code