Responsive image
博碩士論文 etd-0620118-230946 詳細資訊
Title page for etd-0620118-230946
論文名稱
Title
微波輔助合成近紅外光發光之金奈米團簇並應用於生物體內外
Microwave-Assisted Synthesis of Near-Infrared Gold Nanoclusters for In vivo and In vitro Biological Application.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-17
繳交日期
Date of Submission
2018-07-20
關鍵字
Keywords
近紅外光、溶菌酶、金奈米團簇
gold nanoclusters, Lysozyme, near-infrared
統計
Statistics
本論文已被瀏覽 5648 次,被下載 0
The thesis/dissertation has been browsed 5648 times, has been downloaded 0 times.
中文摘要
利用蛋白質模板修飾的金奈米團簇(Gold nanoclusters, AuNCs)因具有特殊的光化學性質已經廣泛作為螢光傳感器使用,而酸鹼值、反應時間以及蛋白質模板的差異,會影響金奈米團簇的顆粒尺寸和團聚效果,進而導致不同的螢光放射波長,然而以單一激發表現出雙重放射的螢光探針,因具有不同強度比例的差異可以更準確的定量分析物,已經成為分析感測和生物影像的發展趨勢。
在本篇研究中,使用第六型溶菌酶Lysozyme為蛋白質模板開發出新型雙螢光放射之溶菌酶奈米顆粒包覆金奈米團簇(LysNPs-AuNCs),以340 nm波長激發於425 nm放射出藍色螢光和820 nm放射出近紅外螢光,不但具有雙螢光的特性且放光波長位於近紅外光波段。由於近紅外光的高穿透性、較不受生物組織自發螢光的干擾和能量較低不易破壞正常細胞,加上金奈米團簇本身具有良好的抗光漂白性、耐鹽性、寬廣的酸鹼值容忍性、抵抗蛋白質水解的能力以及低毒性,因此此篇研究的材料對於生物體內有一大優勢,可以更寬廣運用在各種生物體中。
由於金奈米團簇是利用蛋白質模板所合成,可在蛋白質表面上修飾鏈親和素(Streptavidin),再將針對癌細胞具有專一性標記的抗體修飾生物素(Biotin),藉由streptavidin及biotin兩者間高親和力能有效將材料修飾上抗體,最後再利用此抗體標記癌細胞後,以光源激發產生螢光放射的現象,因此可以有效達到癌細胞成像。除此之外,在LysNPs-AuNCs和鏈親和素間修飾上長碳鏈的PEG(Poly ethylene glycol),不僅能夠增長LysNPs-AuNCs於腫瘤位置的滯留時間,還能有效地降低毒性以達到更準確的腫瘤尺寸以及位置的判斷依據。
Abstract
Recently, modification of gold nanocluster with different protein template has been developed as biosensor by fluorometric. Different functional modified gold nanocluster exhibits different particle size and optical species due to pH value, reaction time, various proteins and so on. As a result, the emission of the gold nanocluster could be adjusted to apply. However, the facile ratiometric fluorescent probes have become the analysis and cell-image developing trend.
In this study, we report a novel duel- fluorometric LysNPs-AuNCs which modified with type VI Lysozyme as the protein template, and the emission at 425 nm and 820 nm of LysNPs-AuNCs is excited by UV light at 340 nm. The near-infrared characteristic of LysNPs-AuNCs can provide deep imaging penetration, low fluorescence background and less damage of normal cell, and LysNPs-AuNCs is anti-photobleaching, salt tolerance, wide-range of pH, proteolysis and low toxicity can be widely used in the organisms.
The streptavidin could be combined with the surface of LysNPs-AuNCs, and the modification of biotin with antibody which is specifically labeled cancer cells via high affinity between streptavidin and biotin. As a result, the fluorescence of Lys NPs-AuNCs is excited by UV source after the cancer cells are labeled on the antibody so that the imaging of cancer cells can be effectively achieved. Additionally, PEG (polyethylene glycol) modified between LysNPs-AuNCs and streptavidin not only increases the residence time of Lys NPs-AuNCs at the tumor site, but it also decreases the toxicity and achieves a more accurate tumor size and location.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
謝誌 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
微波輔助合成近紅外光發光之金奈米團簇並應用於生物體內外 1
1.1 前言 1
1.2 實驗部分 6
1.2.1 實驗藥品 6
1.2.2 儀器設備 9
1.2.3 溶液配製 13
1.2.4 合成溶菌酶奈米顆粒 (LysozymeNPs) 14
1.2.5 合成溶菌酶為模板的金奈米團簇 (Lys-AuNCs) 14
1.2.6 合成溶菌酶奈米顆粒為模板的金奈米團簇 (LysNPs-AuNCs) 15
1.2.7 偵測溫度與pH值 16
1.2.8 偵測鹽類與穀胱甘肽 (GSH) 16
1.2.9 偵測胰蛋白酶 (Trypsin) 與其選擇性 16
1.2.10 單粒子螢光圖像(Single particle image) 17
1.2.11 生物接合 (Bioconjugation) 17
1.2.12 細胞實驗 17
1.2.12.1 細胞實驗樣品前處理 17
1.2.12.2 細胞養殖(cell culture) 18
1.2.12.3 細胞毒性分析 (MTT assay) 19
1.2.12.4 細胞內吞作用 (Endocytosis) 19
1.2.12.5 細胞標記 (Cell labeling) 20
1.2.13 斑馬魚動物實驗 21
1.2.13.1 斑馬魚配魚、孵化、去卵殼 21
1.2.13.2 斑馬魚實驗樣品前處理 22
1.2.13.3 斑馬魚毒性分析 23
1.2.13.4 斑馬魚注射 23
1.2.14 小鼠動物實驗 25
1.2.14.1 小鼠腦部注射 25
1.2.14.2 小鼠腫瘤樣品前處理 25
1.2.14.3 小鼠尾部注射 25
1.3 結果與討論 27
1.3.1 合成並鑑定蛋白質奈米顆粒為模板的金奈米團簇 27
1.3.1.1 溶菌酶奈米顆粒為模板的金奈米團簇 27
1.3.1.2 其他蛋白質奈米顆粒為模板的金奈米團簇 52
1.3.2 對於以蛋白質為模板的金奈米團簇螢光穩定性測試 55
1.3.2.1 對於LysNPs-AuNCs金奈米團簇的螢光穩定度 55
1.3.2.2 對於Lys-AuNCs金奈米團簇的螢光穩定度 66
1.3.3金奈米團簇LysNPs-AuNCs合成最適化條件探討 69
1.3.4 生物體外及體內LysNPs-AuNCs的應用 81
1.3.4.1 LysNPs-AuNCs生物體外及體內的螢光顯影 81
1.3.4.2 LysNPs-AuNCs癌細胞標記的顯影 92
1.4 結論 99
1.5 參考文獻 100
參考文獻 References
1. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435.
2. Wu, C.; Chiu, D. T., Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. 2013, 52, 3086-3109.
3. Tseng, W. L.; Cheng, T. L.; Yu, C. J., Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: Improving colorimetric sensitivity and accelerating color change. Biosens. Bioelectron. 2010, 25, 204-210.
4. Schmid, G.; Maihack, V.; Lantermann, F.; Peschel, S., Ligand-stabilized metal clusters and colloids: properties and applications. J. Chemi. Soc., Dalton Trans. 1996, 589-595.
5. Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S., Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116, 3722-3811.
6. Lee, H.; Lee, K.; Kim, I. K.; Park, T. G., Fluorescent gold nanoprobe sensitive to intracellular reactive oxygen species. Adv. Funct. Mater. 2009, 19, 1884-1890.
7. Meng, F.; Zhong, Z.; Feijen, J., Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules 2009, 10, 197-209.
8. Koziara, J. M.; Lockman, P. R.; Allen, D. D.; Mumper, R. J., Paclitaxel nanoparticles for the potential treatment of brain tumors. J. Control. Release. 2004, 99, 259-269.
9. Tokumasu, F.; Fairhurst, R. M.; Ostera, G. R.; Brittain, N. J.; Hwang, J.; Wellems, T. E.; Dvorak, J. A., Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots. J. Cell Sci. 2005, 118, 1091-1098.
10. Haes, A. J.; Van Duyne, R. P., A Nanoscale Optical Biosensor:  Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596-10604.
11. Haes, A. J.; Hall, W. P.; Chang, L.; Klein, W. L.; Van Duyne, R. P., A Localized Surface Plasmon Resonance Biosensor:  First Steps toward an Assay for Alzheimer's Disease. Nano Lett. 2004, 4, 1029-1034.
12. Yu, C.; Irudayaraj, J., Multiplex Biosensor Using Gold Nanorods. Anal. Chem. 2007, 79, 572-579.
13. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 2008, 41, 1578-1586.
14. Kawasaki, E. S.; Player, A., Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine: Nanotechnology, Biology and Medicine 2005, 1, 101-109.
15. Hahn, M. A.; Singh, A. K.; Sharma, P.; Brown, S. C.; Moudgil, B. M., Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal. Bioanal. Chem. 2011, 399, 3-27.
16. Aiken, J. D.; Lin, Y.; Finke, R. G., A perspective on nanocluster catalysis: polyoxoanion and (n-C4H9)4N+ stabilized Ir(0)∼300 nanocluster ‘soluble heterogeneous catalysts’. J. Mol. Catal. A: Chem. 1996, 114, 29-51.
17. Hunter, R., Polymeric stabilization and flocculation. Foundations of colloid science 1987, 1, 450-493.
18. Bard, A.; Faulkner, L., LR, Electrochemical Methods. Jonhs Wiley & Sons, Inc. New York 1980.
19. Napper, D. H., Polymeric stabilization of colloidal dispersions. Academic Pr: 1983; Vol. 3.
20. Bönnemann, H.; Braun, G.; Brijoux, W.; Brinkmann, R.; Tilling, A. S.; Seevogel, K.; Siepen, K., Nanoscale colloidal metals and alloys stabilized by solvents and surfactants Preparation and use as catalyst precursors. J. Organomet. Chem. 1996, 520, 143-162.
21. Lu, Y.; Chen, W., Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594-3623.
22. Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R., ph‐Dependent synthesis of pepsin‐mediated gold nanoclusters with blue green and red fluorescent emission. Adv. Funct. Mater. 2011, 21, 3508-3515.
23. Zhao, P.; He, K.; Han, Y.; Zhang, Z.; Yu, M.; Wang, H.; Huang, Y.; Nie, Z.; Yao, S., Near-Infrared Dual-Emission Quantum Dots–Gold Nanoclusters Nanohybrid via Co-Template Synthesis for Ratiometric Fluorescent Detection and Bioimaging of Ascorbic Acid In Vitro and In Vivo. Anal. Chem. 2015, 87, 9998-10005.
24. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889.
25. Baksi, A.; Xavier, P. L.; Chaudhari, K.; Goswami, N.; Pal, S.; Pradeep, T., Protein-encapsulated gold cluster aggregates: the case of lysozyme. Nanoscale 2013, 5, 2009-2016.
26. Liu, C. L.; Wu, H. T.; Hsiao, Y. H.; Lai, C. W.; Shih, C. W.; Peng, Y. K.; Tang, K. C.; Chang, H. W.; Chien, Y. C.; Hsiao, J. K., Insulin‐Directed Synthesis of Fluorescent Gold Nanoclusters: Preservation of Insulin Bioactivity and Versatility in Cell Imaging. Angew. Chem. Int. Ed. 2011, 50, 7056-7060.
27. Zhou, C.; Hao, G.; Thomas, P.; Liu, J.; Yu, M.; Sun, S.; Öz, O. K.; Sun, X.; Zheng, J., Near‐Infrared Emitting Radioactive Gold Nanoparticles with Molecular Pharmacokinetics. Angew. Chem. 2012, 124, 10265-10269.
28. Adnan, N. N. M.; Ahmad, S.; Kuchel, R. P.; Boyer, C., Exploring the potential of linear polymer structures for the synthesis of fluorescent gold nanoclusters. Mater. Chem. Front. 2017, 1, 80-90.
29. Chakraborty, S.; Babanova, S.; Rocha, R. C.; Desireddy, A.; Artyushkova, K.; Boncella, A. E.; Atanassov, P.; Martinez, J. S., A hybrid DNA-templated gold nanocluster for enhanced enzymatic reduction of oxygen. J. Am. Chem. Soc. 2015, 137, 11678-11687.
30. Liu, G.; Shao, Y.; Ma, K.; Cui, Q.; Wu, F.; Xu, S., Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bull. 2012, 45, 69-74.
31. Weissleder, R., A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316.
32. Owens III, D. E.; Peppas, N. A., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93-102.
33. Oyewumi, M. O.; Yokel, R. A.; Jay, M.; Coakley, T.; Mumper, R. J., Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J. Control. Release. 2004, 95, 613-626.
34. Wu, X.; He, X.; Wang, K.; Xie, C.; Zhou, B.; Qing, Z., Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2010, 2, 2244-2249.
35. Chen, T. H.; Tseng, W. L., (Lysozyme Type VI)‐Stabilized Au8 Clusters: Synthesis Mechanism and Application for Sensing of Glutathione in a Single Drop of Blood. Small 2012, 8, 1912-1919.
36. Li, Y.; Li, P.; Zhu, R.; Luo, C.; Li, H.; Hu, S.; Nie, Z.; Huang, Y.; Yao, S., Multifunctional Gold Nanoclusters-Based Nanosurface Energy Transfer Probe for Real-Time Monitoring of Cell Apoptosis and Self-Evaluating of Pro-Apoptotic Theranostics. Anal. Chem. 2016, 88, 11184-11192.
37. Chen, W.-Y.; Lin, J.-Y.; Chen, W.-J.; Luo, L.; Wei-Guang Diau, E.; Chen, Y.-C., Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomedicine 2010, 5, 755-764.
38. Rohiwal, S. S.; Satvekar, R. K.; Tiwari, A. P.; Raut, A. V.; Kumbhar, S. G.; Pawar, S. H., Investigating the influence of effective parameters on molecular characteristics of bovine serum albumin nanoparticles. Appl. Surf. Sci. 2015, 334, 157-164.
39. Bhushan, B.; Dubey, P.; Kumar, S. U.; Sachdev, A.; Matai, I.; Gopinath, P., Bionanotherapeutics: niclosamide encapsulated albumin nanoparticles as a novel drug delivery system for cancer therapy. RSC Adv. 2015, 5, 12078-12086.
40. Migneault, I.; Dartiguenave, C.; Bertrand, M. J.; Waldron, K. C., Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 2004, 37, 790-806.
41. Ma, X.; Hargrove, D.; Dong, Q.; Song, D.; Chen, J.; Wang, S.; Lu, X.; Cho, Y. K.; Fan, T.-H.; Lei, Y., Novel green and red autofluorescent protein nanoparticles for cell imaging and in vivo biodegradation imaging and modeling. RSC Adv. 2016, 6, 50091-50099.
42. Le Guével, X.; Trouillet, V.; Spies, C.; Li, K.; Laaksonen, T.; Auerbach, D.; Jung, G.; Schneider, M., High photostability and enhanced fluorescence of gold nanoclusters by silver doping. Nanoscale 2012, 4, 7624-7631.
43. Yu, C.-J.; Chen, T.-H.; Jiang, J.-Y.; Tseng, W.-L., Lysozyme-directed synthesis of platinum nanoclusters as a mimic oxidase. Nanoscale 2014, 6, 9618-9624.
44. Antaris, A. L.; Chen, H.; Diao, S.; Ma, Z.; Zhang, Z.; Zhu, S.; Wang, J.; Lozano, A. X.; Fan, Q.; Chew, L.; Zhu, M.; Cheng, K.; Hong, X.; Dai, H.; Cheng, Z., A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun. 2017, 8, 15269.
45. Jin, T.; Tsuboi, S.; Komatsuzaki, A.; Imamura, Y.; Muranaka, Y.; Sakata, T.; Yasuda, H., Enhancement of aqueous stability and fluorescence brightness of indocyanine green using small calix [4] arene micelles for near-infrared fluorescence imaging. MedChemComm 2016, 7, 623-631.
46. Baksi, A.; Mitra, A.; Mohanty, J. S.; Lee, H.; De, G.; Pradeep, T., Size Evolution of Protein-Protected Gold Clusters in Solution: A Combined SAXS–MS Investigation. J. Phys. Chem. C 2015, 119, 2148-2157.
47. Gerrard, J.; Brown, P.; Fayle, S., Maillard crosslinking of food proteins I: the reaction of glutaraldehyde, formaldehyde and glyceraldehyde with ribonuclease. Food Chem. 2002, 79, 343-349.
48. Govindaraju, S.; Ankireddy, S. R.; Viswanath, B.; Kim, J.; Yun, K., Fluorescent gold nanoclusters for selective detection of dopamine in cerebrospinal fluid. Sci. Rep. 2017, 7, 40298.
49. Xavier, P. L.; Chaudhari, K.; Verma, P. K.; Pal, S. K.; Pradeep, T., Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2010, 2, 2769-2776.
50. Kong, J.; Yu, S., Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549-559.
51. Shang, L.; Wang, Y.; Jiang, J.; Dong, S., pH-Dependent Protein Conformational Changes in Albumin:Gold Nanoparticle Bioconjugates:  A Spectroscopic Study. Langmuir 2007, 23, 2714-2721.
52. Carbonaro, M.; Nucara, A., Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino acids 2010, 38, 679-690.
53. Rothschild, K. J., The early development and application of FTIR difference spectroscopy to membrane proteins: A personal perspective. Biomedical Spectroscopy and Imaging 2016, 5, 231-267.
54. Silveira, S. T.; Gemelli, S.; Segalin, J.; Brandellli, A., Immobilization of keratinolytic metalloprotease from Chryseobacterium sp. strain kr6 on glutaraldehyde-activated chitosan. J Microbiol Biotechn 2012, 22, 818-825.
55. Surewicz, W. K.; Mantsch, H. H.; Chapman, D., Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 1993, 32, 389-394.
56. Holzwarth, G.; Doty, P., The ultraviolet circular dichroism of polypeptides1. J. Am. Chem. Soc. 1965, 87, 218-228.
57. Greenfield, N. J.; Fasman, G. D., Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 1969, 8, 4108-4116.
58. Venyaminov, S. Y.; Baikalov, I. A.; Shen, Z. M.; Wu, C. S. C.; Yang, J. T., Circular Dichroic Analysis of Denatured Proteins: Inclusion of Denatured Proteins in the Reference Set. Anal. Biochem. 1993, 214, 17-24.
59. Beauchamp, D. L.; Khajehpour, M., Studying salt effects on protein stability using ribonuclease t1 as a model system. Biophys. Chem. 2012, 161, 29-38.
60. Bao, Y.; Zhong, C.; Vu, D. M.; Temirov, J. P.; Dyer, R. B.; Martinez, J. S., Nanoparticle-Free Synthesis of Fluorescent Gold Nanoclusters at Physiological Temperature. J. Phys. Chem. C 2007, 111, 12194-12198.
61. Tian, D.; Qian, Z.; Xia, Y.; Zhu, C., Gold Nanocluster-Based Fluorescent Probes for Near-Infrared and Turn-On Sensing of Glutathione in Living Cells. Langmuir 2012, 28, 3945-3951.
62. Zhang, X.-D.; Luo, Z.; Chen, J.; Song, S.; Yuan, X.; Shen, X.; Wang, H.; Sun, Y.; Gao, K.; Zhang, L.; Fan, S.; Leong, D. T.; Guo, M.; Xie, J., Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance. Sci. Rep. 2015, 5, 8669.
63. Olsen, J. V.; Ong, S.-E.; Mann, M., Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteomics 2004, 3, 608-614.
64. Wang, G.-L.; Jin, L.-Y.; Dong, Y.-M.; Wu, X.-M.; Li, Z.-J., Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection. Biosens. Bioelectron. 2015, 64, 523-529.
65. Hu, L.; Han, S.; Parveen, S.; Yuan, Y.; Zhang, L.; Xu, G., Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens. Bioelectron. 2012, 32, 297-299.
66. Xu, Y.; Sherwood, J.; Qin, Y.; Crowley, D.; Bonizzoni, M.; Bao, Y., The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 2014, 6, 1515-1524.
67. Makarava, N.; Parfenov, A.; Baskakov, I. V., Water-Soluble Hybrid Nanoclusters with Extra Bright and Photostable Emissions: A New Tool for Biological Imaging. Biophys. J. 2005, 89, 572-580.
68. Morishita, K.; MacLean, J. L.; Liu, B.; Jiang, H.; Liu, J., Correlation of photobleaching, oxidation and metal induced fluorescence quenching of DNA-templated silver nanoclusters. Nanoscale 2013, 5, 2840-2849.
69. Hofmann, C. M.; Essner, J. B.; Baker, G. A.; Baker, S. N., Protein-templated gold nanoclusters sequestered within sol–gel thin films for the selective and ratiometric luminescence recognition of Hg 2+. Nanoscale 2014, 6, 5425-5431.
70. Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L., Gold‐Nanocluster‐Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water. Adv. Funct. Mater. 2010, 20, 951-956.
71. Chang, B. H.; Bae, Y. C., Lysozyme− Lysozyme and Lysozyme− Salt Interactions in the Aqueous Saline Solution: A New Square-Well Potential. Biomacromolecules 2003, 4, 1713-1718.
72. Meen, T.-H.; Tsai, J.-K.; Chao, S.-M.; Lin, Y.-C.; Wu, T.-C.; Chang, T.-Y.; Ji, L.-W.; Water, W.; Chen, W.-R.; Tang, I.-T., Surface plasma resonant effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells. Nanoscale Res. Lett. 2013, 8, 450.
73. Lin, H.; Imakita, K.; Fujii, M.; Sun, C.; Chen, B.; Kanno, T.; Sugimoto, H., New insights into the red luminescent bovine serum albumin conjugated gold nanospecies. J. Alloys Compd. 2017, 691, 860-865.
74. Liu, J.-M.; Chen, J.-T.; Yan, X.-P., Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal. Chem. 2013, 85, 3238-3245.
75. Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X., Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem. 2011, 83, 1193-1196.
76. Wei, H.; Wang, Z.; Yang, L.; Tian, S.; Hou, C.; Lu, Y., Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 2010, 135, 1406-1410.
77. Biswas, A.; Banerjee, S.; Gart, E. V.; Nagaraja, A. T.; McShane, M. J., Gold nanocluster containing polymeric microcapsules for intracellular ratiometric fluorescence biosensing. ACS Omega 2017, 2, 2499-2506.
78. North, T. E.; Zon, L. I., Modeling human hematopoietic and cardiovascular diseases in zebrafish. Dev. Dyn. 2003, 228, 568-583.
79. Pichler, F. B.; Laurenson, S.; Williams, L. C.; Dodd, A.; Copp, B. R.; Love, D. R., Chemical discovery and global gene expression analysis in zebrafish. Nat. Biotechnol. 2003, 21, 879.
80. Dorresteijn, R.; Berwald, L.; Zomer, G.; De Gooijer, C.; Wieten, G.; Beuvery, E., Determination of amino acids using o-phthalaldehyde-2-mercaptoethanol derivatization effect of reaction conditions. J. Chromatogr. A 1996, 724, 159-167.
81. Roth, M., Fluorescence reaction for amino acids. Anal. Chem. 1971, 43, 880-882.
82. Diamandis, E. P.; Christopoulos, T. K., The biotin-(strept) avidin system: principles and applications in biotechnology. Clin. Chem. 1991, 37, 625-636.
83. Lin, C.-A. J.; Yang, T.-Y.; Lee, C.-H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I., Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009, 3, 395-401.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code