Responsive image
博碩士論文 etd-0620118-233225 詳細資訊
Title page for etd-0620118-233225
論文名稱
Title
磺酸化聚芳香醚高分子應用質子交換膜燃料電池元件
Application of Sulfonated Poly(arylene ether)s Polymer Exchange Membrane Fuel Cells Device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-19
繳交日期
Date of Submission
2018-07-23
關鍵字
Keywords
質子交換膜、燃料電池、膜電極組、尺寸安定性、聚芳香醚
Proton Exchange Membrane, Poly(arylene ether)s, Membrane Electrode Assembly, Dmensional Stability, Fuel cells
統計
Statistics
本論文已被瀏覽 5635 次,被下載 0
The thesis/dissertation has been browsed 5635 times, has been downloaded 0 times.
中文摘要
本研究主要延伸SP4的研究,此材料為多苯環單體與市售單體4,4'-(9-Fluorenylidene)diphenol進行親核性聚縮合反應得到聚芳香醚高分子,並控制不同磺酸化程度,製備出三種不同磺酸化程度的磺酸化高分子薄膜,其由酸鹼滴定得知其離子交換能力(Ion Exchange Capacity,IEC)介於2.53至3.15 mmol/g之間,隨後將評估其作為質子交換膜可行性。
材料特性方面,先由GPC量測其分子量約為111,000 g/mol左右。隨著磺酸化程度的增加,質子導電度也有明顯的提升,也因為磺酸根的數量增加,薄膜因為吸水導致澎潤、尺寸安定性變差。之後以SP4-2.53與Nafion 211作為比較。由於SP4-2.86以及SP4-3.15其IEC值較高,導致薄膜安定性較差,其元件效率不佳。透過掃描式電子顯微鏡(SEM)觀察膜電極組的微觀形貌。而量測結果在80oC、100%RH下,SP4最大元件效率為0.866 W/cm2;而Nafion 211為1.56 W/cm2。
此研究著重於元件部分,並在氫氣/氧氣及氫氣/空氣條件下,因濕度、陰極陽極的觸媒loading量影響其元件效率。觸媒含量下降時陰極還原反應降低,而且SP4薄膜在低濕度的環境下其質子導電度較低導致燃料電池效率較差。
Abstract
This thesis is the study on poly(arylene ether)s (SP4) as proton exchange membrane and high-efficiency fuel cell device. The polymers were prepared by polymerization of 4,4'-(9-Fluorenylidene)diphenol and 4,4’’’’-Difluoro-3,3’’’’-bistrifluoromethyl-2’’,3’’,5’’,6’’-tetraphenyl-[1,1’;4’,1’’;4’’, 1’’’;4’’’,1’’’’]-pentaphenyl The degree of sulfonation was controlled by different concentration of reagents so that the ion exchange capacity (IEC) value of sulfonated polymers were measured by titration method ranging from 2.53 to 3.15 mmol/g.
The weight-average molecular weight of polymers about 111,000 g/mol. The polymers not only good dimensional stability but also increased proton conductivity with increasing IEC. Due to the high IEC values of SP4-2.86 and SP4-3.15, the film stability is poor and the component efficiency is not well. Scanning electron microscopy (SEM) was used to observe the microscopic morphology of the membrane electrode assembly. The maximum power density of SP4-2.53 at 80oC and 100 % RH is 0.886 W/cm2.
This study focuses on the components and effects the efficiency due to humidity and Pt loading of the cathode anode under H2/O2 and H2/air conditions. When the catalyst content is decreased, the cathode reduction reaction is lowered, and the low conductivity of the SP4-2.53 in a low humidity environment results in poor fuel cell efficiency.
目次 Table of Contents
論文中文審定書 i
論文英文審定書 ii
論文公開授權書 iii
致謝 iv
摘要 v
Abstract vi
目錄 vii
圖目錄 x
表目錄 xiii
第一章 序論 1
1-1 前言 1
1-2 燃料電池種類 2
1-3 質子交換膜燃料電池 4
1-3-1元件構造 4
1-3-2 工作原理 5
1-4 質子傳導機制 6
1-4-1 Grotthus Mechanism 6
1-4-2 Vehicular Mechanism 7
1-4-3 Surface Mechanism 7
1-5 質子交換膜種類 8
1-5-1全氟離子性高分子薄膜(Perfluorinated polymer membrane) 8
1-5-2部分含氟離子性高分子薄膜(Partially fluorinated polymer membrane) 9
1-5-3非氟離子性高分子薄膜(Non-Perfluorinated polymer membrane) 9
1-5-4酸鹼高分子薄膜(Acid-base blends polymer membrane) 10
1-5-5有機/無機混成薄膜(organic/inorganic blend membrane) 10
1-6 質子交換膜 11
1-6-1 質子交換膜特性 11
1-6-2 燃料電池極化曲線 11
1-7 文獻回顧 13
1-8 研究動機 22
第二章 儀器介紹與原理 23
2-1 鑑定分析儀器 23
凝膠滲透層析儀(Gel Permeation Chromatography,GPC) 23
2-2 磺酸化薄膜特性量測 24
交流阻抗分析儀(AC Impedance) 24
2-3 元件效率量測分析與MEA製備 25
2-3-1 自動薄膜塗佈機(Automatic Film Applicator) 25
2-3-2 超音波霧化噴塗機(Ultrasonic Spraying System) 26
2-3-3 燃料電池元件(Membrane electrode assembly,MEA) 27
2-4 MEA微結構分析 28
掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 28
第三章 實驗步驟 29
3-1 實驗藥品總表 29
3-2 高分子聚合 30
3-3 高分子磺酸化 32
3-4 磺酸化高分子之薄膜製備與特性量測 34
3-4-1 磺酸化高分子薄膜製備 34
3-4-2 IEC測定 35
3-4-3 吸水率及尺寸安定性測試 36
3-3-4 Hydration number (λ) 36
3-4-5 膜電極組製備 37
第四章 結果與討論 38
4-1 材料鑑定 38
GPC分析 38
4-2 磺酸化薄膜之物理性質分析 39
4-2-1 磺酸化薄膜IEC 39
4-2-2 薄膜吸水率、尺寸安定性及λ值 40
4-3 磺酸化薄膜之電性分析 42
質子導電度數據分析 42
4-4 燃料電池元件效率分析 44
4-4-1 標準元件量測 44
4-4-2 不同Pt Loading量測 52
4-5 SEM微結構分析 65
第五章 結論 66
第六章 參考文獻 67
第七章 附錄 72
SP4-2.86 72
SP4-3.15 72


圖目錄
圖1-1 氫燃料電池車 1
圖1-2 質子交換膜燃料電池元件構造 4
圖1-3 質子交換膜燃料電池工作原理 5
圖1-4 質子傳遞機制:(a)Grotthus、(b)Vehicular、(c)Surface Mechanism 6
圖1-5 低濕環境及高濕環境下質子傳遞情況示意圖 7
圖1-6 全氟離子性高分子結構 8
圖1-7 BAM之結構示意圖 9
圖1-8 常見的含鹼基高分子結構 10
圖1-9 燃料電池極化曲線圖 12
圖1-10 SPE-1結構圖與不同溫度下質子導電度 13
圖1-11 SPE-2結構圖 13
圖1-12 Ueda團隊所發表的高分子BNSH 14
圖1-13 在80oC、95%RH環境下BNSH與Nafion不同IEC值的質子導電度 14
圖1-14 元件效率圖與阻抗頻譜圖 15
圖1-15 在1.2 A/cm2下的電池電壓與陰極氣體計量比 15
圖1-16 MEA之SEM圖:(a) SPES;(b) Nafion 16
圖1-17 MEA阻抗頻譜圖:(a) SPES;(b) Nafion 16
圖1-18 Pt負載量優化測試(a)陽極;(b)陰極 17
圖1-19 (a)陰極不同電解質含量效率圖(b)不同Pt負載與電解質含量效率比較 17
圖1-20 (a)SPPS交替型共聚高分子;(b)不同溫度下(at 80%RH)與不同濕度下(at 80oC)薄膜導電度 18
圖1 21 多苯環高分子結構與元件效率圖 19
圖1 22 元件壽命測試 19
圖1-23 磺酸化高分子SKP1與SSP1 20
圖1-24 SKP1與SSP1之(a)質子導電度數據;(b)元件效率圖 20
圖1-25 新型磺酸化高分子SFC1與SFC2高分子結構示意圖 21
圖1-26 SFC1與SFC2之:(a)質子導電度數據;(b)元件效率圖 21
圖1-27 SP4高分子結構圖 22
圖2-1 凝膠滲透層析儀 23
圖2-2 交流阻抗分析儀 24
圖2-3 恆溫恆濕儀 24
圖2-4 自動薄膜塗佈機 25
圖2-5 超音波霧化噴塗機 26
圖2-6 燃料電池元件 27
圖2-7 掃描式電子顯微鏡 28
圖2-8 SEM樣品圖 28
圖3-1 SP4高分子薄膜 34
圖3-2 元件製備組裝流程圖 37
圖4-1 GPC量測圖 38
圖4-2 SP4在不同溫度下之:(a)吸水率與;(b) λ值 40
圖4-3 SP4在80oC、不同相對濕度下的質子導電度 42
圖4-4 不同IEC值的SP4與Nafion在80oC、95%RH環境下的質子導電度 44
圖4-5 三種SP4與Nafion在氫氣/氧氣、80oC、100%RH下元件效率圖 45
圖4-6 在氫氣/氧氣下不同濕度之元件效率圖:(a) Nafion 211;(b) SP4-2.53 47
圖4-7 Nafion 211與SP4-2.53在氫氣/氧氣下、100%及50%RH之元件效率圖 48
圖4-8 在氫氣/空氣下不同濕度之元件效率圖:(a) Nafion 211;(b) SP4-2.53 50
圖4-9 Nafion 211與SP4-2.53在氫氣/空氣、100%與50%RH元件效率圖 51
圖4-10 在氫氣/氧氣下不同觸媒含量與濕度之元件效率圖:(a) Nafion 211;(b) SP4-2.53 54
圖4-11 在氫氣/空氣下不同觸媒含量與濕度之元件效率圖:(a) Nafion 211;(b) SP4-2.53 56
圖4-12 在氫氣/氧氣、100%RH下不同觸媒含量之元件效率圖:(a) Nafion 211;(b) SP4-2.53 58
圖4-13 在氫氣/氧氣、50%RH下不同觸媒含量之元件效率圖:(a) Nafion 211;(b) SP4-2.53 60
圖4-14 在氫氣/空氣、100%RH下不同觸媒含量之元件效率圖:(a) Nafion 211;(b) SP4-2.53 62
圖4-15 在氫氣/空氣、50%RH下不同觸媒含量之元件效率圖:(a) Nafion 211;(b) SP4-2.53 64
圖4-16 不同觸媒含量MEA剖面圖 65

表目錄
表1-1 燃料電池種類 3
表1-2 PEMFC與DMFC反應工作式 5
表3-1 磺酸化試劑調配比例 33
表3-2 磺酸化高分子SP4-X與Nafion 211陰陽兩極負載之觸媒量 37
表4-1 P4之GPC數據分析表 38
表4-2 磺酸化高分子之IEC數值 39
表4-3 磺酸化高分子薄膜物理特性表 41
表4-4 SP4在80oC、不同相對濕度的質子導電度 43
表4-5 磺酸化高分子之元件量測條件與效率 45
表4-6 SP4-2.53與Nafion 211 Loading不同含量的觸媒 52
參考文獻 References
[1]台灣燃料電池資訊網: http://www.tfci.org.tw/
[2]黃鎮江,燃料電池,全華圖書公司
[3]Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy, 2011, 88, 981-1007.
[4]T. J. Peckham, S. Holdcroft, Structure?morphology?property relationships of non?perfluorinated proton?conducting membranes, Advanced materials, 2010, 22, 4667-4690.
[5]K. Jiao, X. Li, Water transport in polymer electrolyte membrane fuel cells, Progress in Energy and Combustion Science, 2011, 37, 221-291.
[6]S. Slade, S. A. Campbell, T. R. Ralph, F. C. Walsh, Ionic conductivity of an extruded Nafion 1100 EW series of membranes, Journal of The Electrochemical Society, 2002, 149, A1556-A1564.
[7]M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Progress in Polymer Science, 2000, 25, 1463-1502.
[8]K. Schmidt-Rohr, Q. Chen, Parallel cylindrical water nanochannels in Nafion fuel-cell membranes, Nature materials, 2008, 7, 75-83.
[9]S. Feng, K. Shen, Y. Wang, J. Pang, Z. Jiang, Concentrated sulfonated poly (ether sulfone)s as proton exchange membranes, Journal of Power Sources, 2013, 224, 42-49.
[10]S. H. D. Almeida, Y. Kawano, Thermal behavior of Nafion membranes, Journal of Thermal Analysis and Calorimetry, 1999, 58, 569-577.
[11]A. Siu, B. Pivovar, J. Horsfall, K. V. Lovell, S. Holdcroft, Dependence of Methanol Permeability on the Nature of Water and the Morphology of Graft Copolymer Proton Exchange Membranes, Journal of Polymer Science Part B: Polymer Physics, 2006, 44, 2240-2252.
[12]M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, J. E. McGrath, Alternative Polymer Systems for Proton Exchange Membranes(PEMs), Chemical Reviews, 2004, 104, 4587-4612.
[13]K. D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of Membrane Science, 2001, 185, 29-39.
[14]B. Smitha, S. Sridhar, A. A. Khan, Solid polymer electrolyte membranes for fuel cell applications-a review, Journal of membrane Science, 2005, 259, 10-26.
[15]P. A. Steiner, R. Sandor, Polybenzimidazole prepreg: improved elevated temperature properties with autoclave processability, High Performance Polymers, 1991, 3, 139-150.
[16]C. Laberty-Robert, K. Valle, F. Pereira, C. Sanchez, Design and properties of functional hybrid organic–inorganic membranes for fuel cells, Chemical Society Reviews, 2011, 40, 961-1005.
[17]S. J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy, 2010, 35, 9349-9384.
[18]管衍德,燃料電池技術,全華圖書公司, 2010.
[19]I. Pilatowsky, R. J. Romero, C. A. Isaza, S. A. Gamboa, P. J. Sebastian, W. Rivera, Cogeneration Fuel Cell-Sorption Air Conditioning Systems, Green Energy and Technology, 2011.
[20]C. Francia, V. S. Ijeri, S. Specchia, P. Spinelli, Estimation of hydrogen crossover through NafionR membranes in PEMFCs, Journal of Power Sources, 2011, 196, 1833-1839.
[21]K. Miyatake, Y. Chikashige, M. Watanabe, Novel sulfonated poly(arylene ether): A proton conductive polymer electrolyte designed for fuel cells, Macromolecules, 2003, 36, 9691-9693.
[22]B. Bae, K. Miyatake, M. Watanabe, Sulfonated poly(arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications, Journal of Membrane Science, 2008, 310, 110-118.
[23]K. Matsumoto, T. Nakagawa, T. Higashihara, M. Ueda, Sulfonated poly (ether sulfone)s with binaphthyl units as proton exchange membranes for fuel cell application, Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47, 5827-5834.
[24]K. H. Kim, K. Y. Lee, H. J. Kim, E. Cho, S. Y. Lee, T. H. Lim, S. P. Yoon, I. C. Hwang, J. H. Jang, The effects of NafionR ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method, International Journal of Hydrogen Energy, 2010, 35, 2119-2126.
[25]W. J. Ahn, S. D. Yim, Y. W. Choi, Y. J. Sohn, S. H. Park, Y. G. Yoon, G. G. Park, T. H. Yang, K. B. Kim, Performance and durability of sulfonated poly(arylene ether sulfone)membrane-based membrane electrode assemblies fabricated by decal method for polymer electrolyte fuel cells, Electrochimica Acta, 2011, 56, 7732-7739.
[26]T. H. Huang, H. L. Shen, T. C. Jao, F. B. Weng, A. Su, Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine, International Journal of Hydrogen Energy, 2012, 37, 13872-13879.
[27]Y. Lim, H. Lee, S. Lee, H. Jang, Md. A. Hossain, Y. Cho, T. Kim, Y. Hong, W. Kim, Synthesis and properties of sulfonated poly(phenylene sulfone)s without ether linkage by Diels–Alder reaction for PEMFC application, Electrochimica Acta, 2014, 119, 16-23.
[28]M. Adamski, T. J. G. Skalski, B. Britton, T. J. Peckham, L. Metzler, S. Holdcroft, Highly Stable, Low Gas Crossover, Proton-Conducting Phenylated Polyphenylenes, Angewandte Chemie, 2017, 129, 9186-9189.
[29]H. F. Lee, B. Britton, Y. C. Huang, T. J. Peckham, Y. Y. Hsu, Y. C. Tseng, P. C. Huang, C. C. Lee, M. Y. Chang, S. Holdcroft, W. Y. Huang, Effect of ketone versus sulfone groups on the properties of poly(arylene ether)-based proton exchange membranes, Journal of Materials Science, 2016, 51, 9805-9821.
[30]Y. C. Huang, H. F. Lee, Y. C. Tseng, C. C. Lee, M. Y. Chang, W. Y. Huang, Synthesis of novel sulfonated poly(arylene ether)s containing a tetra-trifluoromethyl side chain and multi-phenyl for proton exchange membrane fuel cell application, RSC Advances, 2017, 7, 33068-33077.
[31]李旭峰,「高分子電解質之製備與燃料電池應用評估」,國立中山大學光電工程學系博士論文(2015)
[32]H. F. Lee, Y. C. Huang, P. H. Wang, C. C. Lee, Y. S. Hung, R. Gopal, S. Holdcroft, W. Y. Huang, Synthesis of highly sulfonated polyarylene ethers containing alternating aromatic units, Materials Today Communications, 2015, 3, 114-121.
[33]Toray Research Center: http://www.toray.cn/trc/kinougenri/zairyou/zai_007.html
[34]SIGMA technology:http://sigmatekcorp.com/product/230/?category=1&sub_category=164
[35]N.C. Foster, Ph. D., P. E., Sulfonation and Sulfation Processes, Chemithon, 1997.
[36]W. A. Thaler, Hydrocarbon-soluble sulfonating reagents. Sulfonation of aromatic polymers in hydrocarbon solution using soluble acyl sulfates, Macromolecules, 1983, 16, 623-628.
[37]N. Li, S. Y. Lee, Y. L. Liu, Y. M. Lee, M. D. Guiver, A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers, Energy Environmental Science., 2012, 5, 5346-5355.
[38]Y. S. Ye, Y. C. Yen, C. C. Cheng, W. Y. Chen, L. T. Tsai, F. C. Chang, Sulfonated poly(ether ether ketone) membranes crosslinked with Sulfonic acid containing benzoxazine monomer as proton exchange membranes, Polymer, 2009, 50, 3196-3203.
[39]黃詣强,「部分含氟磺酸化聚芳香醚電解質之製備與燃料電池應用評估」,國立中山大學光電工程學系博士論文(2017)
[40]M. S. Wilson, S. Gottesfeld, Thin-film catalyst layers for polymer electrolyte fuel cell electrodes, Journal of applied electrochemistry, 1992, 22, 1-17.
[41]S. Hou, S. Liao, D. Dang, H. Zou, T. Shu, L. Du, Self-humidifying membrane electrode assembly prepared by adding microcrystalline cellulose in anode catalyst layer as preserve moisture, International Journal of Hydrogen Energy, 2014, 39, 12842-12848.
[42]S. Holdcroft, Fuel Cell Catakyst Layers: A Polymer Science Perspective, Chemistry of Materials, 2014, 26, 381-393.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.190.217.134
論文開放下載的時間是 校外不公開

Your IP address is 18.190.217.134
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code