Responsive image
博碩士論文 etd-0621100-115536 詳細資訊
Title page for etd-0621100-115536
論文名稱
Title
中央鑽孔碳纖維/聚二醚酮複材積層板之高溫疲勞探討
Investigation of Centrally Notched AS-4/PEEK Composite Laminates Subjected to Tension-Tension Fatigue at Elevated Temperature
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-02
繳交日期
Date of Submission
2000-06-21
關鍵字
Keywords
碳纖維、聚二醚酮、拉伸、疲勞、高溫
AS-4, PEEK, tension, ultimate strength, fatigue strength, elevated temperature
統計
Statistics
本論文已被瀏覽 5700 次,被下載 1729
The thesis/dissertation has been browsed 5700 times, has been downloaded 1729 times.
中文摘要
摘 要
碳纖維(AS-4)加強材與聚二醚酮(PEEK)基材之熱塑性APC-2複合材料。其具有高勁度比、高強度比、質量輕、疲勞壽命長之優點,抗濕度強、成形的時間短、耐高溫等特性。本文即針對此一材料,中央鑽孔後模擬於高溫模態下承受拉力-拉力之疲勞測試,探討其機械性質與破壞機制。
選用十字疊層 、類似均向疊層 、角疊 參種疊序試片。及APC-2複合材料之Tg溫度為143℃,所以中央鑽孔後溫度參數分別探討於25℃、75℃、100℃、125℃、150℃五種環境溫度下之抗拉實驗及疲勞實驗,求得彈性模數、極限強度、疲勞強度及振次壽命,並建立應力與疲勞振次曲線(S-LogN Curve),探討複合材料中央鑽孔後在溫度效應下之疲勞特性及破壞機制。
實驗之結果得知,於相同溫度下,極限強度、彈性模數、疲勞強度方面以十字疊之強度值最大,類似均向疊次之,角疊最小。然而角疊之大變形量已超越彈性範圍非為本實驗所預估,必須重新規劃量測儀器再行專門探討。中央鑽孔後,破壞皆產生鑽孔處,並降低複合材料極限強度與疲勞強度值。隨著溫度之提高,極限強度、疲勞強度值及彈性模數值均呈降低之現象。在接近Tg甚而高於Tg溫度時,基材聚二醚酮軟化,使極限強度、彈性模數、疲勞強度降低差距較為明顯。碳纖維與聚二醚酮之間的黏結優劣及結晶程度,均影響APC-2複材之機械性質。
Abstract
ABSTRACT
PEEK matrix reinforced by carbon fibers as one thermoplastic composite material is studied. Thermoplastic composites have the advantages of high specific stiffness and strength, longer fatigue life, good resistance to moisture absorption and high temperature condition. The thesis is aimed to investigate the mechanical properties and fracture mechanism of the centrally notched AS-4/PEEK composite laminates subjected to tension-tension fatigue loading at elevated temperature.
We use three common types of laminates, such as cross-ply , quasi-isotropic and angle-ply . After centrally notched, we first obtain the base-line data of mechanical properties by tensile tests at five different temperatures, such as 25℃、75℃、100℃、125℃、150℃. Then, the fatigue tests are conducted, we receive the fatigue strength and life and establish the stress-life curves. The fatigue characteristics and fracture mechanism of a centrally notched composite laminate at elevated temperature are also recorded and observed.
The empirical results can be concluded as follows. At the same temperature, the laminate of cross-ply possesses the largest ultimate strength and fatigue strength, quasi-isotropic the second angle-ply the smallest. As for the elastic modulus, the laminate of cross-ply is larger than that of quasi-isotropic. However, the large strain of angle-ply is within the plastic range that is out of the limit of the study. Thus, a further investigation is needed for angle-ply laminates alone. After centrally notched, the net area is reduced of the specimen, and then the elastic modulus is raised and the ultimate strength and fatigue strength of composite materials are lower. As the temperature increasing, the ultimate strength, fatigue strength and elastic modulus are all decreasing.
目次 Table of Contents
目 錄

目錄 ……………………………………………………… I
表目錄…………………………………………………… III
圖目錄…………………………………………………… V
摘要……………………………………………………… IX
英文摘要………………………………………………… X
第一章 …………………………………………………… 1
1-1 前言 ……………………………………………… 1
1-2 複合材料概述 ……………………………………… 1
1-3 研究方向 …………………………………………… 2
1-4 文獻回顧 …………………………………………… 3
1-5 組織與章節 ………………………………………… 5
第二章 實驗部分………………………………………… 7
2-1 材料之機械性質 …………………………………… 7
2-2 儀器設備 …………………………………………… 8
2-3 試片製作與分組 …………………………………… 8
2-4 實驗過程與步驟 …………………………………… 11
第三章 實驗結果………………………………………… 21
3-1 拉力實驗 …………………………………………… 21
3-2 疲勞實驗 …………………………………………… 22
3-3 破壞模式 …………………………………………… 27
第四章 分析與討論……………………………………… 52
4-1 複合材料鑽孔後對強度影響 ……………………… 52
4-1.1在極限強度方面 ………………………………… 52
4-1.2在疲勞強度方面 ………………………………… 53
4-2 複材鑽孔後彈性模數之影響 ……………………… 55
4-3 破壞模式之探討 …………………………………… 57
第五章 結論與建議 …………………………………… 59
5-1 結論 ………………………………………………… 59
5-2 建議 ………………………………………………… 59
5-3 未來發展 …………………………………………… 60
參考文獻 ………………………………………………… 62

表 目 錄

表1-1複合材料單向疊層之主要材料性質 ……………… 6
表3-1複材中央鑽孔4mmψ十字疊、類似均向疊不同溫度中之拉伸實驗值 …………………………………………… 29
表3-2複材無鑽孔十字疊、類似均向疊於不同溫度中之拉伸實驗值 ………………………………………………. 29
表3-3複材中央鑽孔4mmψ疲勞實驗前測得之彈性模數(GPa) … 29
表3-4複材無鑽孔疲勞實驗前測得之彈性模數(GPa) … 29
表3-5常溫下中央鑽孔4mmψ十字疊與類似均向疊試片施加應力與疲勞振次實驗值 ………………………………. 32
表3-6常溫下無鑽孔十字疊與類似均向疊試片施加應力與疲勞振次實驗值 ………………………………………. 32
表3-7中央鑽孔4mmψ十字疊試片施加應力與疲勞振次實驗值…33
表3-8無鑽孔十字疊試片施加應力與疲勞振次實驗值 …34
表3-9中央鑽孔4mmψ類似均向疊試片施加應力與疲勞振次實驗值 …………………………………………………. 35
表3-10無鑽孔類似均向疊試片施加應力與疲勞振次實驗值 …. 36
表3-11複材中央鑽孔4mmψ疲勞實驗後之應用統計曲線擬合之結果 ………………………………………………… 37
表3-12中央鑽孔4mmψ之十字疊及類似均向疊之疲勞強度與極限強度之比值 ……………………………………… 37
表3-13無鑽孔之十字疊及類似均向疊之疲勞強度與極限強度之比值 ………………………………………………… 37

圖 目 錄

圖2-1將積層板與銅板置於在熱壓機之上下模間 …… 13
圖2-2切割試片用之水冷式鑽石切割機 ……………… 13
圖2-3直立式高速鑽孔機 ……………………………… 14
圖2-4 MTS-810材料試驗機及高溫爐設備 …………… 14
圖2-5 MTS-651高溫爐 ………………………………… 15
圖2-6 MTS-634.11F-25高溫應變指示計 ……………… 15
圖2-7十字疊 積層板各層分解圖 …………………. 16
圖2-8類似均向疊 積層板各層分解圖 ………. 16
圖2-9 角疊積層板各層分解圖 ………………………… 16
圖2-10將Polyimide玻璃紙置於熱壓機上下模之間 …. 17
圖2-11熱壓機上下模閉合時之情形 …………………. 17
圖2-12(a)積層板成形之溫度與時間之關係圖 ……… 18
圖2-12(b)積層板成形氮氣加壓與時間之關係圖 …… 18
圖2-13(a)高溫壓製成形後之積層板 ………………… 19
圖2-13(b)積層板之尺寸 ……………………………… 19
圖2-14複合材料試片圖 ………………………………. 20
圖2-15複合材料試片之尺寸 …………………………. 20
圖3-1複材中央鑽孔4mmψ及無鑽孔十字疊之極限應力與溫度關係圖 ………………………………………………. 30
圖3-2複材中央鑽孔4mmψ及無鑽孔類似均向疊之極限應力與溫度關係圖 …………………………………………. 30
圖3-3複材中央鑽孔4mmψ及無鑽孔十字疊之彈性模數與溫度關係圖 ………………………………………………… 31
圖3-4複材中央鑽孔4mmψ及無鑽孔類似均向疊之彈性模數與溫度關係圖 …………………………………………… 31
圖3-5中央鑽孔4mmψ十字疊於溫度75℃之S-log N曲線擬合圖 ……………………………………………………… 38
圖3-6中央鑽孔4mmψ十字疊於溫度100℃之S-log N曲線擬合圖 ……………………………………………………… 38
圖3-7中央鑽孔4mmψ十字疊於溫度125℃之S-log N曲線擬合圖 ……………………………………………………… 39
圖3-8中央鑽孔4mmψ十字疊於溫度150℃之S-log N曲線擬合圖 ……………………………………………………… 39
圖3-9中央鑽孔十字疊分別於25℃、75℃、100℃、125℃
、150℃中之S-log N曲線圖 …………………………… 40
圖3-10無鑽孔十字疊分別於25℃、75℃、100℃、125℃、150℃中之S-log N曲線圖 …………………………… 40
圖3-11中央鑽孔十字疊分別於25℃、75℃、100℃、125℃
、150℃中之Stress Level-log N曲線圖 …………… 41
圖3-12無鑽孔十字疊分別於25℃、75℃、100℃、125℃、150℃中之Stress Level-log N曲線圖 ……………… 41
圖3-13中央鑽孔4mmψ類似均向疊試片於溫度75℃之S-log N曲線擬合圖 ……………………………………… 42
圖3-14中央鑽孔4mmψ類似均向疊試片於溫度100℃之S-log N曲線擬合圖 ……………………………………… 42
圖3-15中央鑽孔4mmψ類似均向疊試片於溫度125℃之S-log N曲線擬合圖 ……………………………………… 43
圖3-16中央鑽孔4mmψ類似均向疊試片於溫度150℃之S-log N曲線擬合圖 ……………………………………… 43
圖3-17中央鑽孔類似均向疊分別於25℃、75℃、100℃、125℃、150℃中之S-log N曲線圖 …………………… 44
圖3-18無鑽孔類似均向疊分別於25℃、75℃、100℃、125℃、150℃中之S-log N曲線圖 …………………… 44
圖3-19中央鑽孔類似均向疊分別於25℃、75℃、100℃、125℃、150℃中之Stress Level-log N曲線圖 ……… 45
圖3-20無鑽孔類似均向疊分別於25℃、75℃、100℃、125
℃、150℃中之Stress Level-log N曲線圖 ………… 45
圖3-21複材中央鑽孔4mmψ及無鑽孔十字疊之疲勞負載與溫度的關係 ……………………………………………… 46
圖3-22複材中央鑽孔4mmψ及無鑽孔類似均向疊之疲勞負載與溫度的關係 ………………………………………… 46
圖3-23複材中央鑽孔4mmψ及無鑽孔十字疊之(疲勞強度/極限強度)比值與溫度的關係 ………………………… 47
圖3-24複材中央鑽孔4mmψ及無鑽孔類似均向疊之(疲勞強度/極限強度)比值與溫度的關係 ……………………… 47
圖3-25中央鑽孔4mmψ之十字疊試片由左而右溫度分別為75℃、100℃、125℃、150℃之破壞模式之正視圖 … 48
圖3-26中央鑽孔4mmψ之十字疊試片由左而右溫度分別為75℃、100℃、125℃、150℃之破壞模式之斷面圖 … 48
圖3-27中央鑽孔4mmψ之類似均相疊試片由左而右溫度分別為75℃、100℃、125℃、150℃之破壞模式之正視圖.49
圖3-28中央鑽孔4mmψ之類似均相疊試片由左而右溫度分別為75℃、100℃、125℃、150℃之破壞模式之斷面圖.49
圖3-29左邊為中央鑽孔4mmψ角疊之標準試片、中間為疲勞實驗後、右邊為拉伸實驗後 ………………………… 50
圖3-30左邊為無鑽孔角疊之標準試片、中間為疲勞實驗後
、右邊為拉伸實驗後 …………………………………. 50
圖3-31施力負載與複合材料碳纖維方向示意圖 ……. 51
參考文獻 References
參 考 文 獻
[1] Simonds, R.A., Bakis, C.E., and Stinchcomb, W. W., 1989, "Effect of Matrix Toughness on Fatigue Response of Graphite Fiber Composite Laminates ", Composite Materials: Fatigue and Fracture, Second Volume, ASTM STP 1012, P. A. Lagace Ed., P.5.
[2] Lagace, P. A., Bhat, N. V., and Gundogdu, A., 1993, " Response of Notched Graphite/Epoxy and Graphite/PEEK Systems ", Composite Materials: Fatigue and Fracture, Fourth Volume, ASTM STP 1156, P.55.
[3] Simonds, R. A., Stinchcomb, W. W., 1989, " Response of Notched AS4/PEEK Laminates due to Tension/Compression Loadings ", ASTM STP 1044, P.133.
[4] Spearing, S. M., Beaumont, P. W. R., and Kortschat, M. T., 1992, " The Fatigue Damage Mechanics of Notched Carbon Fiber/PEEK Laminates ", Composites, Vol.23, P.305.
[5] Telreja, R., 1987, Fatigue of Composite Materials, Technomic Publishing Co. Inc.
[6] Hwang, W., and Han, K.S., 1986, " Fatigue of Composite-Fatigue Modulus Concept and Life Prediction ", Journal of Composite Materials, Vol. 20, pp. 154-165.
[7] Wu W. F., 1996, " A Study of Fatigue Damage and Fatigue Life of Composite Laminates ", Journal of Composite Materials, Vol.30, pp.123~139.
[8] Subramanian S., Reifsnider K.L., and Stinchcomb W.W., 1995, " A Cumulative Damage Model to Predict The Fatigue Life of Composite Laminates Including The Effect of a Fiber-Matrix Interphase ", International Journal of Fatigue, Vol.17, pp.343~351.
[9] Miyano, Y., and Nakada, M., 1997, " Prediction of Flexural Fatigue Strength of CRFP Composites Under Arbitrary Freqency, Stress Ratio and Temperature ", Journal of Composite Materials, Vol.31, pp.619~638.
[1] Schaff, J. R., 1997, " Life Prediction Methodology for Composite Structures. Part Ⅱ-Spectrum Fatigue ", Journal of Composite Materials, Vol.31, pp.158~181.
[11] Song, D. Y., 1997, " Fatigue Life Prediction of Cross-Ply Composite Laminates ", Materials Science and Engineering - A, pp.329~335.
[12] Hwang, W., and Han, K. S., 1989, " Fatigue of Composite Materials-Damage Model and Life Prediction ", American Society for Testing and Materials STP 1012, Philadelphia, pp. 87~102.
[13] Knut, O. R., and Andreas, T. E., 1996, " Estimation of Fatigue Curves for Design of Composite Laminates ", Composites Part - A, pp.485~491.
[1] Diao, X., Lin, Y., and Mai, Y. W., 1997, " Fatigue behavior of CF / PEEK Composites Laminates Made From Commingled Prepreg. Part Ⅰ: Experimental Studies ", Composite Part – A, pp.739~747.
[15] Curtis, D. C., Moore, D. R., Slater, B., and Zahlan, N., 1988 " Fatigue Testing of Muli-Angle Laminates of CF / PEEK ", Composites, Vol.19, pp.446~452.
[16] Lee S. S., Zawada, L. P., Staehler, J. M., and Folsom, C. A., 1998, " Mechanical Behavior and High Temperature Performance of A Woven Nicalon / Si-N-C Ceramic-Matrix Composite ", Journal of the American Ceramic Society, Vol. 81, pp.1797~1811.
[17] Zhu, S., Mizuno, M., Nagano, Y., Jianwu, C., Yutaka, K., and Hiroshi, K., 1998, " Creep and Fatigue Behavior in an Enhanced SiC / SiC Composite at High Temperature ", Journal of the American Ceramic Society, Vol.81, pp. 2269~2277.
[18] Ochoa, O. O., and Elliott, C. H., 1998, " Inhibited Carbon – Carbon Composites: Isothermal and Fatigue Exposure ", Journal of Composite Materials, Vol.32, pp. 1157~1177.
[19] Chiou, P., and Bradley, L., 1995, " Effects of Seaweter Absorption on Fatigue Crack Development in Carbon / Epoxy EDT Specimens ", Composites, Vol.26, pp.869~876.
[20] Jones, D. P., Leach, D. C., and Moore, D. R., 1985, " Mechanical Properties of Poly ( Ether-Ether-Ketone ) for Engineering Applications ", Polymer, Vol.26, pp.1385~1393.
[21] Diao, X., Lin, Y., and Mai, Y. W., 1997, " Fatigue Behavior of CF / PEEK Composites Laminates Made From Commingled Prepreg. Part Ⅱ: Statistical Simulation ", Composite Part – A, pp.749~755.
[22] Gardin, C. H., and Frenot, M. C. L., 1992, " Fatigue Behavior of Thermoset and Thermoplastic Cross-Ply Laminates ", Composites, Vol.23, pp.109~116.
[23] Whitworth, H.A., Llorente, S. G., and Croman, R. B., 1997, " Analysis of the Fatigue Performance of Notched and Unnotched Graphite Thermoplastic Composite Laminates ", Journal of Thermoplastic Composite Materials, Vol. 10, pp.435~452.
[24] Brillhart, M., and Botsis, J., 1992, " Fatigue Fracture Behaviour of PEEK: 2. Effects of Thickness and Temperature ", Polymer, Vol. 33, pp.5225~5232.
[25] Sun, C.T., and Yoon, K.J., 1991, " Characterization of Elastic - Plastic Behavior of AS4/PEEK Thermoplastic Composite for Temperature Variation ", Journal of Composite Materials, Vol. 25, pp.1297~1313.
[26] Moffatt, J.E., and Plumbridge, W.J., and Hermann, R., 1997, " High Temperature Crack Annealing Effects on Fracture Toughness of Alumina and Alumina-SiC composite ", British Ceramic Transactions, Vol. 96, pp.23~29.
[27] Rao, K. T. V., and Ritchie, R.O., 1998, " High-Temperature Fracture and Fatigue Resistance of a Ductile B-TiNb Reinforced G-TiAl Intermetallic Composite ", Acta Materialia, Vol. 46, pp.4167~4180.
[28] Xia, K., and Langdon, T.G., 1996, " Fracture Behaviour at Elevated Temperatures of Alumana Matrix Composites Reinforced with Silicon Carbide Whiskers ", Journal of Materials Science, Vol. 31, pp. 5487~5492.
[29] Boccaccini, A. R., West, G., Janczak, J., Lewis, M.H., and Kern, H., 1997, " Tensile Behavior and Cyclic Creep of Continuous Fiber - Reinforced Glass Matrix Composites at Room and Elevated Temperatures ", Journal of Materials Engineering and Performance, Vol. 6, pp. 344~348.
[1] 許哲銘, 1991, " 中央鑽孔複合材料積層板之疲勞破壞及層間應力分析 ", 國立中山大學機械所博士論文.
[31] 李傳華, 1998, " 複合材料積層板疲勞強度與壽命預測及層間應力分析 ", 國立中山大學機械所博士論文.
[32] 彭聖森, 1999, " 碳纖維/聚二醚酮複合材料積層板溫度效應對疲勞破壞行為之影響 ", 國立中山大學機械所碩士論文.
[33] 張熙超, 1999, " 碳纖維/聚二醚酮複合材料積層板鑽孔及溫度效應之破壞機制與機械性質分析 ", 國立中山大學機械所碩士論文.
[34] 任明華,林偉煌, 1996 " 多功能油壓夾頭構造 ", 中華民國專利, 新型第118763號.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code