Responsive image
博碩士論文 etd-0621100-130459 詳細資訊
Title page for etd-0621100-130459
論文名稱
Title
純銅經等徑轉角擠型加工後微觀組織之演化
Microstructural Evolution in Copper Deformed by Equal Channel Angular Extrusion
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor

口試委員
Advisory Committee

口試日期
Date of Exam
2000-06-12
繳交日期
Date of Submission
2000-06-21
關鍵字
Keywords
等徑轉角擠型
Equal Channel Angular Extrusion
統計
Statistics
本論文已被瀏覽 5673 次,被下載 1587
The thesis/dissertation has been browsed 5673 times, has been downloaded 1587 times.
中文摘要
無中文摘要
Abstract
Abstract

Equal channel angular extrusion (ECAE) has been used to investigate the formation of submicron grain structures in copper deformed to ultra-high plastic strains by different die angles, deformation routes, and deformation temperatures. The result was characterized by the use of transmission election microscopy (TEM), and the evolution of the deformed Cu depended on several parameters such as die angle, deformation route, and deformation temperature. It has been demonstrated that the most effective method of forming high angle boundaries and recrystallized grains by severe plastic deformation is to rotate billets with a constant clockwise 90o between each pass (route BC) via a 90o die angle. Besides, the temperature effect on the microstructural evolution is studied. With increasing deformation temperature, the microstructure becomes more homogeneous because the climb and the cross-slip of dislocations are easier at higher temperatures, and the fraction of high angle boundaries, recrystallized grains and size of them are increased significantly with the deformation temperature. In addition, the thermomechanical process was also investigated in the present work. It is suggested that a uniform submicron grained structure could be obtained by increasing the deformation temperature and decreasing the intermediate annealing temperature to promote dynamic recovery and to inhibit discontinuous recrystallization.
目次 Table of Contents
Table of Content

Table of Content………………………………………………………………………i
List of Tables…………………………………………………………………..……...iii
List of Figures………………………………………………………………………...iv
Acknowledgements………………………………………………………………….viii
Abstract……………………………………………………………………………….ix
I. Introduction………………………………………………………………………….1
II. Literature Review…………………………………………………………………..3
2.1 The principle of ECAE………………………………………..………………...3
2.2 Microstructures developed by ECAE………………………………..………...10
2.2-1 Deformation route………………………………………………………...10
2.2-2 Die angle………………………………………………………………….12
2.2-3 Microstructure developed in different materials………………………….12
2.3 Properties of submicrometer-grained (SMG) materials…………………….....15
2.4 The deformation structure of FCC metals………………………………..……17
2.5 Dynamic recovery and dynamic recrystallization…………………………..…23
2.5-1 Continuous dynamic recrystallization…………………………………….25
III. Experimental Procedure………………………………………………………….29
IV. Results……………………………………………………………………………31
4.1 Characteristics of ECAE……………………………………………..………..31
4.2 Effect of die angle……………………………………………………………..48
4.3 Effect of deformation route……………………………………………………68
4.4 Effect of deformation temperature…………………………………………….78
4.5 Effect of static recovery……………………………………………………….92
V. Discussion………………………………………………………………………101
5.1 General features………………………………………………………………101
5.2 Formation of HABs and recrystallized grains………………………………101
5.3 Effect of die angle……………………………………………………………104
5.4 Effect of deformation temperature…………………………………………105
5.5 Suggestion for future study…………………………………………………107
VI. Conclusion……………………………………………………………………...108
Reference……………………………………………………………………………109
Appendix………………………………………………………………………….113
參考文獻 References
Reference

1. C. Suryanarayana, D. Mukhopadhyay, S. N. Patankar, and F. H. Froes, J. Mater. Res., 7 (1992), 2114.
2. G. W. Nieman, J. R. Weertman, and R. W. Siegel, Scripta Metall. Mater., 23 (1989), 2013.
3. J. S. C. Jang and C. C. Kock, Scripta Metall. Mater., 24 (1990), 1599.
4. R. Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapelski, and B. Baudelet, Scripta Metall. Mater., 27 (1992), 855.
5 R. S. Musalimov and R. Z. Valiev, Scripta Metall. Mater., 27 (1992), 1685.
6 R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, Mater. Sci. Eng., A168 (1993), 141.
7 J. Languillaume, F. Chmelik, G. Kapelski, F. Bordeaux, A. A. Nazarov, G. Canova, C. Esling, R. Z. Valiev, and B. Baudelet, Acta Metall. Mater., 41 (1993), 2953.
8 V. Y. Gertsman, R. Birringer, R. Z. Valiev, and H. Gleiter, Scripta Metall. Mater., 30 (1994), 229.
9 H. J. Zughaer and J. Nutting, Mater. Sci. Tech., 8 (1992), 1104.
10 U. Andrade, M. A. Meyers, K. S. Vecchio, and A. H. Chokshi, Acta Metall. Mater., 42 (1994), 3183.
11 V. M. Segal, Mater. Sci. Eng., A197 (1995), 157.
12 R. Z. Abdulov, R. Z. Valiev, and N. A. Krasilnikov, J. Mater. Sci. Let., 9 (1990), 1445.
13 M. Kawazoe, T. Shibata, T. Mukal, and K. Higashi, Scripta Metall. Mater., 36 (1997), 699.
14 M. V. Markushev, C. C. Bampton, M. Y. Murashkin, and D. A. Hardwick, Mater. Sci. Eng., A234-236 (1997), 927.
15 N. K. Tsenev, R. Z. Valiev, and I. R. Kuzeev, Mater. Sci. Forum, 242 (1997), 127.
16 S. Komura, P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, Scripta Metall. Mater., 38 (1998), 1851.
17 T. Mukai, M. Kawazoe, and K. Higashi, Mater. Sci. Eng., A247 (1998), 270.
18 K. Nakashima, Z. Horita, M. Nemoto, and T. G. Langdon, Acta Metall. Mater., 46 (1998), 1589.
19 Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, Acta Metall. Mater., 45 (1997), 4733.
20 Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, Acta Metall. Mater., 46 (1998), 3317.
21 Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, Metall. Trans. A, 29A (1998), 2503.
22 P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, Metall. Trans. A, 30A (1999), 1989.
23 R. Z. Valiev, E. V. Kozlov, Y. F. Ivanov, J. Lian, A. A. Nazarov, and B. Baudelet, Acta Metall. Mater., 42 (1994), 2467.
24 Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, Scripta Metall. Mater., 35 (1996), 143.
25 R. Z. Valiev, Y. V. Ivanisenko, E. F. Rauch, and B. Baudelet, Acta Metall. Mater., 44 (1996), 4705.
26 G. E. Dieter, Mechanical Metallurgy: McGraw-Hill, Inc., 1988.
27 S. Ferrasse, V. M. Segal, K. T. Hartwig, and R. E. Goforth, Metall. Trans. A, 28A (1997), 1047.
28 V. M. Segal, Mater. Sci. Eng., A271 (1999), 322.
29 A. Gholinia, P. B. Prangnell, and M. V. Markushev, Acta Metall. Mater., 48 (2000), 1115.
30 Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, Metall. Trans. A, 29A (1998), 2245.
31 P. L. Sun, “The formation of fine grains in Al during intense plastic deformation”, Master thesis, in Mater. Sci. Eng., National Sun Yat-sen University, Kaohsiung, 55, 1999.
32 J. Wang, M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon, Mater. Sci. Eng., A216 (1996), 41.
33 J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R. Z. Valiev, and T. G. Langdon, Acta Metall. Mater., 44 (1996), 2973.
34 Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, R. Z. Valiev, and T. G. Langdon, Materiaux a grains ultrafins, Ann. Chim. Fr., 21 (1996), 417.
35 Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, R. Z. Valiev, and T. G. Langdon, J. Mater. Res., 11 (1996), 1880.
36 Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, R. Z. Valiev, and T. G. Langdon, Mater. Char., 37 (1996), 285.
37 R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci., 45 (2000), 103.
38 S. R. Agnew and J. R. Weertman, Mater. Sci. Eng., A242 (1998), 174.
39 E. O. Hall, Proc. Phys. Soc. London, B64 (1951), 747.
40 N. J. Petch, J. Iron Steel Inst., 174 (1953), 25.
41 T. G. Langdon, Metall. Trans. A, 13A (1982), 689.
42 R. Z. Valiev, N. A. Krasilnikov, and N. K. Tsenev, Mater. Sci. Eng., A137 (1991), 35.
43 M. Mabuchi, H. Iwasaki, K. Yanase, and K. Higashi, Scripta Metall Mater., 36 (1997), 681.
44 K. Y. Mulyukov, S. B. Khaphizov, and R. Z. Valiev, Phys. stat. sol. (a), 133 (1992), 447.
45 R. Z. Valiev, R. R. Mulyukov, V. V. Ovchinnikov, and V. A. Shabashov, Scripta Metall. Mater., 25 (1991), 841.
46 J. G. Sevillano, P. v. Houtte, and E. Aernoudt, Prog. Mater. Sci., 25 (1980), 69.
47 D. K. Wilsdorf and H. Wilsdorf, Acta Metall. Mater., 1 (1953), 394.
48 N. Hansen, Mater. Sci. Tech., 6 (1990), 1039.
49 B. Bay, N. Hansen, and D. K. Wilsdorf, Mater. Sci. Eng., A113 (1989), 385.
50 B. Bay, N. Hansen, D. A. Hughes, and D. K. Wilsdorf, Acta Metall. Mater., 40 (1992), 205.
51 G. Sachs, Z. VDI, 72 (1928), 734.
52 G. I. Taylor, J. Inst. Met., 62 (1938), 307.
53 G. Y. Chin, in Textures in Research and Practice, Grewen and Wassermann, Eds. Berlin, 236, 1969.
54 H. Honeff and H. Mecking, presented at Proc. ICOTOM, Springer-Verlag, Berlin, 265, 1978.
55 U. F. Kocks and G. R. Canova, presented at Proc. 2nd Int. Riso Symp., Riso, Denmark, 35, 1981.
56 J. Hirsch and K. Lucke, Acta Metall. Mater., 36 (1988), 2883.
57 D. A. Hughes and N. Hansen, Acta Metall. Mater., 45 (1997), 3871.
58 D. A. Hughes and W. D. Nix, Mater. Sci. Eng., A122 (1989), 153.
59 B. Bay, N. Hansen, and D. K. Wilsdorf, Mater. Sci. Eng., A158 (1992), 139.
60 F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 1995.
61 H. J. McQueen, E. Evangelista, and N. D. Ryan, presented at Recrystallization '90, 89, 1990.
62 I. Saunders and J. Nutting, Metal Sci., 18 (1984), 571.
63 M. J. Luton and C. M. Sellars, Acta Metall. Mater., 17 (1969), 103
64 T. Sakai and J. J. Jonas, Acta Metall. Mater., 32 (1984), 189.
65 R. Sandstrom and R. Lagneborg, Scripta Metall. Mater., 9 (1975), 59
66 F. J. Humphreys, Acta Metall. Mater., 45 (1997), 4231
67 M. D. Drury and F. J. Humphreys, Acta Metall. Mater., 34 (1986), 2259
68 M. E. Kassner, H. J. MaQueen, and E. Evangelista, presented at Recrystallization '92, 151, 1992.
69 M. F. Lee, “The development of submicrometer grained materials by ECAE”, Master thesis, in Mater. Sci. Eng., National Sun Yat-sen University, Kaohsiung, 35, 1997.
70 M. H. Shin, “Work Hardening behavior of Cu deformed by ECAE”, Master thesis, in Mater. Sci. Eng., National Sun Yat-sen University, Kaohsiung, 39, 1999.
71 X. Huang, Scripta Metall. Mater., 38 (1998), 1697.
72 G. R. Canova, U. F. Kocks, and J. J. Jonas, Acta Metall. Mater., 32 (1984), 211.
73 F. Montheillet, M. Cohen, and J. J. Jonas, Acta Metall. Mater., 32 (1984), 2077.
74 J. F. Humphreys, “Recrystallization and Recovery”, in Mater. Sci. Tech., vol. 15, R. W. Chan, P. Haasen, and E. J. Kramer, Eds.: VCH, 371, 1991.
75 J. Hjelen, R. Orsund, and E. Nes, Acta Metall. Mater., 39 (1991), 1377.
76 F. Haessner and J. Schmidt, Scripta Metall. Mater., 22 (1988), 1917.
77 J. A. Hines, K. S. Vecchio, and S. Ahzi, Metall. Mater. Trans. A, 29A (1998), 191.
78 U. Essmann and H. Mughrabi, Phil. Mag. A, 40 (1979), 7311.
79 C. P. Chang, P. L. Sun, and P. W. Kao, Acta Metall Mater., to be published.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code