Responsive image
博碩士論文 etd-0621101-134348 詳細資訊
Title page for etd-0621101-134348
論文名稱
Title
銅對蘿蔔組織內過氧化同功酶活性及木質素合成之影響
The Effect of Copper on Peroxidase Activity and Lignin Synthesis in Raphanus sativus L.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
27
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-05-31
繳交日期
Date of Submission
2001-06-21
關鍵字
Keywords
銅、木質化作用、蘿蔔、過氧化酶
peroxidase, lignification, syringaldazine, Raphanus sativus, copper
統計
Statistics
本論文已被瀏覽 5671 次,被下載 2560
The thesis/dissertation has been browsed 5671 times, has been downloaded 2560 times.
中文摘要
以銅(copper)處理蘿蔔(Raphanus sativus, radish)幼苗,會導致根部與下胚軸組織的生長情形受到抑制,其內的陽性與陰性過氧化酶(peroxidase)之活性則因受到誘導而增加。實驗結果顯示,這些活性增加的過氧化酶(陽性過氧化酶:pI 8.6 與 pI 9.3;陰性過氧化酶:pI 5.1與 pI 3.5)與銅處理後組織內木質素(lignin)的含量變化有關。以蘿蔔根部所純化出的過氧化酶(pI 8.6與pI 5.1)進行動力分析,發現以syringaldazine(木質素單體的類似物)為受質的情況下,pI 8.6之過氧化酶對於受質有較高的親和力。因此推測在蘿蔔根部組織內,陽性過氧化酶(pI 8.6)參與木質素合成的可能性較陰性過氧化酶(pI 5.1)為大。
Abstract
Copper (Cu) significantly inhibits the growth of radish (Raphanus sativus) seedlings, even at the concentration of 1 μM. As far as the relationship between the growth of seedlings and peroxidase (POD) activity was concerned, the reduction of radish seedlings was correlated with the induction of cationic and anionic PODs. The data show that the increase of cationic PODs (pI 8.6 and pI 9.3) and anionic PODs (pI 5.1 and pI 3.5) activities was correlated with the rise of lignin contents in Cu-treated tissues. In our investigation, among the radish root PODs, the cationic pI 8.6 POD isozyme displayed a high affinity (Km of 57.9 μM) for syringaldazine (an analog of lignin monomer) and the similar value of catalytic efficiency jointly with the anionic pI 5.1 POD, 0.14 μM-1S-1 and 0.12 μM-1S-1, respectively. The results suggest that the increase of cationic POD (pI 8.6) induced by Cu treatment might be responsible for the lignification in radish roots.
目次 Table of Contents
Table of Contents

Abstract in Chinese-------------I
Abstract in English-------------II
Table of contents---------------III
List of tables and figures------IV
Introduction--------------------1
Methods-------------------------3
Results-------------------------7
Discussion----------------------11
Reference-----------------------13
Tables and figures--------------17

List of Tables and Figures

Table I. Peroxidase isozymes in radish roots control and Cu-treated plants.---17

Table II. Peroxidase isozymes in radish hypocotyls control and Cu-treated plant.---18

Table III. Purification of anionic and cationic peroxidase from radish roots.---19

Table IV. Kinetic properties of the purified peroxidase isozymes from radish roots using syringaldazine as a substrate.---20

Fig. 1A. Effect of Cu on the growth of radish roots.---21

Fig. 1B. Effect on Cu on the growth of radish hypocotyls.---22

Fig. 2A. Effect of Cu on the activities of the peroxidase isozymes in radish roots.---23

Fig. 2B. Effect of Cu on the activities of the peroxidase isozymes in radish hypocotyls.--- 24

Fig. 3A. Effect of Cu on the lignin content during the course of treatment in radish roots.---25

Fig. 3B. Effect of Cu on the lignin content during the course of treatment in radish hypocotyls.---26

Fig. 4. Isoelectric focusing of gel electrophoresis and peroxidase activity staining.---27


參考文獻 References
Baccouch S, Chaoui A, and Ferjani EE (1998) Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiol Biochem 36: 689-694
Bernards MA, Fleming WD, Llewellyn DB, Priefer R, Yang X, Sabatino A, and Plourde GL (1999) Biochemical Characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol 121: 135-145
Bruce R, and West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol 91: 889-897
Carpin S, Crèvecoeur M, Greppin H, and Penel C (1999) Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini. Plant Physiol 120: 799-810
Christensen JH, Bauw G, Welinder KG, Van Montagu M, and Boerjan W (1998) Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol 118: 125-135
Dawson JH (1992) Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240: 433-439
Everdeen DS, Kiefer S, Willard JJ, and Muldoon EP (1988) Enzymatic cross-linkage of monomeric extensin precursors in vitro. Plant Physiol 87: 616-621
Gallego SM, Benavides MP, and Tomaro ML (1996) Effect of heavy metal ion excess on sun flower leaves: evidence for involvement of oxidative stress. Plant Science 121: 151-159
Gazaryan IG, Largimini LM, Ashby GA, and Thorneley RNF (1996) Mechanism of indole-3-acetic acid oxidation by plant peroxidase: anerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem J 313: 841-847
Gazaryan IG, Chubar TA, Mareeva EA, Largimini LM, Vanhuystee RB, and Thorneley RNF (1999) Aerobic oxidation of indole-3-acetic acid catalyzed by anionic and cationic peanut peroxidase. Phytochem 51: 175-186
Higuchi T (1985) Biosynthesis of lignin. In: Biosynthesis a biodegradation of wood components, Higuchi, T. ed. Academic Press, Orlando, USA. pp 141-160
Klotz KL, Liu TT-Y, Liu L, and Largimini LM (1998) Expression of the tobacco anionic peroxidase gene is tissue-specific and development regulared. Plant Mol Biol 36: 509-520
Koricheva J, Roy S, Vranjic JA, Haukioja E, Hughhes PR, and Hänninin O (1997) Antioxidant responses to simulated acid rain and heavy metal deposition in brich seedlings Environ Pollut 95: 249-258
Lagrimini LM, Bradford S, and Rothstein S (1990) Peroxidase-induced wilting in transgenic tobacco plants. Plant Cell 2: 7-18
Lagrimini LM (1991) Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol 96: 577-583
Lagrimini LM, Gingas V, Finger F, Rothstein S, and Liu TT (1997) Characterization of antisense transformed plants deficient in the tobacco anionic peroxidase. Pant Physiol 114: 1187-1196
Li TC, Feng TY, Chen WS, and Liu ZH (2001) The acute effect of copper on the levels of indole-3-acetic acid and lignin in peanut roots. Aust J Plant Physiol 28: 1-6
Liu ZH, Ger MJ (1997) Changes of enzyme activity during pollen germination in maize and possible evidence of lignin synthesis. Aust J Plant Physiol 21: 329-335
Luna CM, Gonzalez CA, and Trippi VS (1994) Oxidative damage caused by excess of copper in oat leaves. Plant Cell Physiol 35: 11-15
Mazhoudi S, Chaoui A, Ghorbal MH, and Ferjani EE (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Science 127: 129-137
Mäder M, and Füssl R (1982) Role of peroxidase in lignification of tobacco cells. Plant Physiol 70: 1132-1134
Müsel G, Schindler t, Bergfeld R, Ruel K, Jacquet G, Lapierre C, Speth V, and Schopfer P (1997) Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta 201: 146-159
Polle A, Otter T, and Seifert F (1994) Apoplastic peroxidase and lignification in needles of norway spruce (Pica abies L.). Plant Physiol 99: 799-803
Quiroga M, Guerrero C, Botella MA, Barceló A, Amaya I, Medina MI, Alonso F J, Forchetti SM, Tigier H, and Valpuesta V (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122: 1119-1127
Richards KD, Schott EJ, Sharma YK, Davis KR, and Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116: 409-418
Schnabelrauch LS, Kieliszewski M, Upham BL, Alizedeh H, and Lamport DTA (1996) Isolation of pI 4.6 extension peroxidase from tomato cell suspension cultures and identification of Val-Tyr-Lys as putative intermolecular cross-link site. Plant J 9: 477-489
Teisseire H, Couderchet M, and Vernet G (1998) Toxic reponse and catalase activity of Lemna minor L. exposed to folpet, copper and their combination. Ecotoxicology and Environmental Safety 40: 194-200
Teisseire H, and Guy V (2000) Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor) Plant Science 153: 65-72
Wang MH, Lee SY, and Rhee HI (1999) Properties of anionic peroxidases purified from Chinese cabbage roots. Plant Physiol Biochem 37: 459-464
Weckx JEJ, and Clijsters HMM (1996) Oxidative damage and defense mechanism in primary leaves of Phaselous vulgaris as a result of root assimilation of toxicity amounts of copper. Physiol Plant 96: 506-512
Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2: 388-392
Wu G, Shortt BJ, Lawrence EB, León L, Fitzismmons KC, Levine EB, Raskin I, and Shah DM (1997) Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115: 427-435
Ye XS, PAN SQ, and Kuc J (1990) Activity, isozyme pattern, and cellular localization of peroxidase as related to systemic resistance of tobacco to blue mold (Peronospora tabacina) and to tobacco mosaic virus. Phytopathology 80: 1295-1299
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code