Responsive image
博碩士論文 etd-0621106-145615 詳細資訊
Title page for etd-0621106-145615
論文名稱
Title
食道灌注辣椒素與6-羥多巴胺所誘發的大鼠下呼吸道發炎反應機制之研究
Mechanisms underlying the inflammatory responses in rat lower airways induced by intraesophageal application of capsaicin and 6-hydroxydopamine
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-05-30
繳交日期
Date of Submission
2006-06-21
關鍵字
Keywords
胃液逆流、氣喘、辣椒素、6-羥多巴胺、神經性發炎
GER, asthma, 6-OHDA, capsaicin, neurogenic inflammation
統計
Statistics
本論文已被瀏覽 5658 次,被下載 1954
The thesis/dissertation has been browsed 5658 times, has been downloaded 1954 times.
中文摘要
持續性的胃液逆流到食道可能會造成呼吸道的發炎反應,也被認定為是引起氣喘的潛在因子之一。氣管與食道之間有著複雜的神經分布以及神經反射機制,且氣管與食道鄰近的位向也使它們能夠有足夠多的互動,但是存在於食道當中的酸性胃液是如何造成呼吸道發炎的反應機制仍然未被透徹的研究。在本次研究當中,我們在大鼠的食道當中灌滴不同的發炎物質,並且觀察大鼠呼吸道發炎反應的產生以及程度上的變化,我們在食道內灌滴辣椒素或6-羥多巴胺以模擬胃液或其他發炎物質在食道當中的情況,在經過不同的時間點之後,犧牲大鼠並且觀察並量化其下呼吸道以及食道的血漿滲漏狀況。血漿滲漏量化的計量方法是在整裝標本計算以印地安追蹤染劑標定的血漿滲漏血管的區域面積密度。過去的研究當中指出神經反射在由胃液逆流所引發的呼吸道發炎反應當中扮演了重要的角色,在本次研究當中我們藉由雙側迷走神經切除術進一步的探討迷走神經是否參與在此神經反射當中。辣椒素或6-羥多巴胺氧化所產生的自由基會破壞細胞膜,並且使細胞激素釋出而加重發炎反應;自由基也會活化NF-κB訊息傳遞路徑而進一步的使發炎反應變嚴重。我們以自由基清除劑二甲基硫尿素做前處理,以判斷自由基是否有參與在由胃液逆流到食道所引發的呼吸道發炎反應。我們的結果顯示出在食道灌滴5 μg/ml/kg的辣椒素會造成大鼠下呼吸道的發炎反應,此發炎反應在給辣椒素刺激之後的五到十五分鐘呈現線性增加,並且在十五分鐘後達到最高點,在三十分鐘後就開始逐漸下降。由10/mg/ml/kg 6-羥多巴胺所誘發的呼吸道發炎反應也隨時間增加,但發炎反應最嚴重的情況發生在給6-羥多巴胺刺激之後的三十分鐘。我們也證明了迷走神經確實參與了氣管與食道之間的神經反射機制,因為雙側迷走神經切除前處理可以有效的抑制在大鼠下呼吸道由辣椒素誘導所產生的發炎反應。自由基也參與了在此發炎反應當中,因為二甲基硫尿素的前處理可以有效抑制由辣椒素或6-羥多巴胺所誘發的下呼吸道血漿滲漏反應。
Abstract
Sustained gastroesophageal reflux (GER) causes airway inflammation and can be considered as a potential trigger of asthma. There are complex neural innervations and reflex mechanisms between trachea and esophagus, and close proximity between them also provide a chance that trachea and esophagus could heavily interact with each other. The studies of the interactions between trachea and esophagus began early, but how gastric contents in the esophagus cause airway inflammation are still not completely understood. In this study, we will observe the extent of airway inflammatory response of the Long Evans rats induced by intraesophageal infusion of different inflammatory agents. We simulated the condition of inflammatory substances in the esophagus by intraesophageal infusion of either capsaicin or 6-hydroxydopamine (6-OHDA). At the different time point after infusion of inflammatory substances, rats were sacrificed for the analysis of the amount of the plasma leakage in the lower airways and esophagus. The amount of plasma leakage was expressed by the area density of India ink-labeled leaky blood vessels in tissue whole mounts. From the previous studies, we realize that neural reflexes played an important role in GER-induced airway inflammation. In this research, we further studied whether vagus nerves were involved in this neural reflex pathway by the pretreatment of bilateral vagotomy. Free radicals generated by the oxidation of 6-OHDA and capsaicin damage the airway epithelium, and lead to the liberation of cellular contents and cytokines that will augment the inflammatory response. Free radicals also activate NF-κB pathway and will further enhance the inflammatory response. We evaluate the extent of these free radicals involved in GER-induced airway inflammation, by pretreatment with a hydroxyl radical scavenger -dimethylthiourea (DMTU). Our results showed that plasma leakage in the airway increased time-dependently from 5 to 15 min after the infusion of 5 μg/ml/kg of capsaicin. This response peaked at 15 min, and gradually diminished after 30 min of capsaicin application. Plasma leakage in the airways caused by the application of 10 mg/ml/kg of 6-OHDA also increased time-dependently and peaked at 30 min. We also demonstrated that the vagus nerve played an important role in GER-induced airway inflammation. Because bilateral vagotomy significantly alleviated the airway inflammatory response caused by the application of capsaicin. Free radicals also involved in this process, because pretreatment with (2.25 g/kg, i.v.) DMTU significantly lowered the amount of plasma leakage caused by capsaicin and 6-OHDA.
目次 Table of Contents
Abstract
摘要
Introduction
Purpose of study
Materials and Methods
Results
Discussion
Conclusion
References
Figures & Tables
參考文獻 References
Baluk, P. and Gabella, G. 1989. Innervation of the guinea pig trachea: a quantitative morphological study of intrinsic neurons and extrinsic nerves. J. Comp. Neuro. 285: 117-132.

Barnes, P. J. 2001. Neurogenic inflammation in the airways. Respir. Phsyiol. 125: 145-154.

Bayliss, W. M. 1901. On the origin from the spinal cord of the vaso-dilator fibers of the hind-limb and on the nature of these fibers. J. Phsiol (lond). 26: 173-209.

Berthoud, H. R. and Neuhuber, W. L. 2000. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85: 1-17.

Canning, B. J. 2001. Role of nerves in asthmatic inflammation and potential influence of gastroesophageal reflux disease. Am. J. Med. 111(8a): 13S-17S.

Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D. and Julius, D. 1997. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 389: 816–824.

Eckberg, D. L. 2003. The human respiratory gate. J. phsiol. 548: 339-352.

Hamamoto, J., Kohrogi, H., Kawano, O., Iwagoe, H., Fujii, K., Hirata, N. and Ando, M. 1997. Esophageal stimulation by HCl causes neurogenic inflammation in the airways in guinea pigs. J. Appl. Phsiol. 82: 738-745.
Harding, S. M. 1999. Gastroesophageal reflux and asthma: insight into the association. J. Allergy Clin. Immuno. 104: 251-259.

Harding, S. M. 2001. Gastroesophageal reflux, asthma, and mechanisms of interaction. Am. J. Med. 111(8A): 8S-12S.

Herve, P., Denjean, A., Jian, R., Simonneau, G. and Duroux, P. 1986. Intraesophageal perfusion of acid increases the bronchomotor response to methacholine and to isocapnic hyperventilation in asthmatic subjects. Am. Rev. Respir. Dis. 134: 986-989.

Holzer, P. 1988. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neurosci. 24: 739-768.

Huang, H. T., Huskell, A. and McDonald, D. M. 1989. Changes in epithelial secretory cells and potentiation of neurogenic inflammation in the trachea of rats with respiratory tract infections. Anat. Embryol. 180: 325-341.

Jack, C. A., Calverley, P. M. and Connelly, R. J. 1995. Thorax. 50: 201-204.

Jancso´, N., Jancso´-Ga´bor, A. and Szolcsa´nyi, J. 1968. The role of sensory nerve endings in neurogenic inflammation induced in human skin and in the eye and paw of the rat. Br. J. Pharmacol. 33: 32–41.

Kohrogi, H., Hamamoto, J., Kawano, O., Iwagoe, H., Fujii, K., Hirata, N. and Ando, M. 2001. The role of substance P release in the lung with esophageal acid. Am. J. Med. 111(8A): 25S-30S.

Kostrzewa, R. M. and Jacobowitz, D. M. 1974. Pharmacological actions of 6-hydroxydopamine. Pharmacol. Rev. 26: 200-287.

Levites, Y., Youdim, M. B., Maor, G. and Mandel, Silvia. 2002. Attenuation of 6-OHDA induced nuclear factor kappaB activation and cell death by tea extracts in neuronal cultures. Biochemical Pharmacol. 63: 21-29.

Mark, R. and Stein, M. D. 2003. Possible mechanisms of influence of esophageal acid on airway hyperresponsiveness. Am. J. Med. 115(3A): 55S-59S.

Matsumoto, K., Aizawa, H., Inoue, H., Koto, H., Fukuyama, S. and Hara, N. 2004. Effect of dimethylthiourea, a hydroxyl radical scavenger, on cigarette smoke-induced bronchoconstriction in guinea pigs. Eur. J. Pharmacol. 403: 157-161.

Pellicano, R., Ponzetto, A., Sneduke, A., Repici, A. and Rizzetto, M. 2004. Gastro-oesophageal reflux disease and asthma: would be possible to improve therapy on the basis of what is now known? Panminerava. Med. 46: 135-140.

Richardson, J. D. and Vasko, M. R. 2002. Cellular mechanisms of neurogenic inflammation Perspect. Pharmacol. 302: 839-845.

Schicho, R., Holzer, P. and Lipper, I. T. 2004. Gastric enteric neurones that respond to luminal injury. Neurogastroenterol. Motil. 16: S129-S132

Sengupta, J. N. 2000. An overview of esophageal sensory receptors. Am. J. Med. 108(4A): 87S-89S.

Stein, M. R. 2003. Possible mechanisms of influence of esophageal acid on airway hyperresponsiveness. Am. J. Med. 115(3A): 55S-59S.

Sulakvelidze, Irakly., Baluk, Peter., McDonald, M. D. 1994. Plasma extravasation induced in rat trachea by 6-OHDA is mediated by sensory nerves, not by sympathetic nerves. Am. Physiol. Soci. 76: 701-709

Susan, R. and Orenstein, M. D. 2001. An overview of reflux-associated disorders in infant’s apnea, laryngospasm, and aspiration. Am. J. Med. 111(8A): 60S-63S.

Szallasi, A. and Blumberg, P. M. 1999. Vallinoid (capsaicin) receptors and mechanisms. Pharrmacol. Rev. 51: 159-210.

Thoenen, H. and Tranzer, J. P. 1968. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine.
Naunyn-Schmiedebergs Arch. Pharmacol. Exp. Pathol. 261: 271-288.

Tominaga, M., Caterina, M. J., Malmberg, A. B., Rosen, T. A., Gilbert, H. Skinner, K., Raumann, B. E., Basbaum, A. I. and Julius, D. 1998. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543.

Tuchman, D. N. Boyle, J. T. and Pack, A. 1984. Comparison of airway responses following tracheal or esophageal acidification in the cat. Gastroenterology 87: 872-881.

Undem, B. J., Chuaychoo, B., Lee, M. G., Weinreich, D., Myers, A. C. and Kollarik, M. 2004. Subtypes of vagal afferent C fibers in guinea-pig lungs J. Phsiol. 556: 905-917.

Whiteman, M. and Hallwell, B. 1997. Thiourea and dimethlthiourea inhibit peroxynitrite dependent damage: nonspecificity as hydroxyl radical scavengers. Free Radic. Biol. Med. 22: 1309-1312.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code