Responsive image
博碩士論文 etd-0621110-135816 詳細資訊
Title page for etd-0621110-135816
論文名稱
Title
以功能性金奈米粒子感測活性氧化物與重金屬離子
Functionalized gold nanoparticles as probe for reactive oxygen species and heavy metal ions determination
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-07
繳交日期
Date of Submission
2010-06-21
關鍵字
Keywords
汞離子、葡萄糖、活性氧化物、金奈米粒子、銀離子
glucose, ROS, gold nanoparticles, Hg2+, Ag+
統計
Statistics
本論文已被瀏覽 5693 次,被下載 0
The thesis/dissertation has been browsed 5693 times, has been downloaded 0 times.
中文摘要
本篇論文利用修飾不同分子的功能性金奈米粒子(Gold nanoparticles﹐AuNPs),藉由AuNPs本身具有高消光係數(Extinction coefficient)和特殊光學性質,開發出活性氧化物(Reactive oxygen species﹐ROS)與重金屬離子感測器。
一、以修飾異硫氰酸螢光素之金奈米粒子作為活性氧化物感測器—應用於血糖之偵測:本篇研究當中,我們利用修飾異硫氰酸螢光素之金奈米粒子(Fluorescein isothiocyanate-gold nanoparticles﹐FITC-AuNPs),可以簡單且靈敏地偵測ROS。當FITC螢光分子吸附在AuNPs表面,因為螢光共振轉移(Fluorescence resonance energy transfer﹐FRET)的原理,FITC分子的螢光訊號大部分都被AuNPs抑制。若我們把2-硫基乙醇(2-Mercaptoethanol﹐2-ME)加入到FITC-AuNPs中,原本吸附在AuNPs表面的FITC分子會被取代出來,而釋放到溶液中,使得螢光強度明顯增加。較為關鍵的是ROS可將兩個2-ME氧化成一個含雙硫鍵(Disulfide bond)的分子,而形成雙硫鍵的結構將無法取代出FITC分子,因此螢光訊號仍被抑制。綜合上述結果,當ROS含量越多,形成含有雙硫鍵的分子越多,而偵測到的螢光訊號相對越低,故可作為ROS感測器。對分析物ROS之最低可偵測濃度(Minimum detectable concentration﹐MDC)分別為:H2O2,1000 nM;超氧陰離子(Superoxide anion),600 nM;氫氧自由基(Hydroxyl radical)。基於此概念,我們開發出一套兩步驟的葡萄糖(Glucose)偵測法:首先,Glucose與其氧化酶(Glucose oxidase﹐GOx)進行反應將產生過氧化氫(Hydrogen peroxide﹐H2O2);接著,將所產生之H2O2與2-ME反應,再透過前面的方法,使用FITC-AuNPs進行偵測,對於Glucose之MDC為1000 nM。藉由本偵測系統亦成功偵測到血清中的Glucose。
二、利用修飾Tween 20界面活性劑之檸檬酸鈉金奈米粒子作為汞離子和銀離子感測器:在第二部分實驗中,我們利用修飾Tween 20界面活性劑之檸檬酸鈉金奈米粒子(Tween 20-citrate-gold nanoparticles﹐Tween 20-citrate-AuNPs),發展出一套快速且具有高選擇性的感測器,可以應用於定量分析Hg2+和Ag+。我們由實驗中發現,檸檬酸鈉包覆的金奈米粒子(Citrate-gold nanoparticles﹐Citrate-AuNPs)修飾上Tween 20界面活性劑,Tween 20分子只是穩固覆蓋在檸檬酸鈉分子上,並未將檸檬酸鈉取代出來。而使用Tween 20界面活性劑主要是保護Citrate-AuNPs可以穩定存在高離子強度溶液中,至於檸檬酸鈉分子是扮演還原劑角色,可將Hg2+或Ag+還原並於AuNPs表面形成金-汞合金(Au-Hg Alloys)或銀殼層(Ag Shell),導致Tween 20分子被迫脫離奈米粒子表面,如此AuNPs無法繼續穩定存在高離子強度溶液中而變為聚集狀態。本篇開發Tween 20-citrate-AuNPs感測器,使用氯化鈉(NaCl)和乙烯二胺四乙酸(Ethylenediaminetetraacetic acid﹐EDTA)分別作為偵測Hg2+和Ag+的遮蔽試劑(Masking agents),其MDC均可達100 nM。此外,使用本系統亦可偵測銀奈米粒子(Silver nanoparticles﹐AgNPs),其MDC為1 pM。據我們所知,本研究為首次利用同一種探針(Tween 20-citrate-AuNPs)即可同時偵測Hg2+和Ag+,並成功透過此系統分析飲用水中Hg2+、Ag+ 和AgNPs,以及海水中Hg2+。
Abstract
none
目次 Table of Contents
摘要I
目錄IV
圖表目錄VII
縮寫表X

第一章 以修飾異硫氰酸螢光素之金奈米粒子作為活性氧化物感測器—應用於血糖之偵測
一、前言1
二、實驗部分9
2.1、藥品與溶液配製9
2.2、儀器裝置11
2.3、FITC-AuNPs之合成方法13
2.4、ROS和Glucose之配製14
2.5、真實樣品之處理與配製15
三、結果與討論16
3.1、透過抑制螢光之概念偵測H2O216
3.2、探討反應中H2O2與2-ME之莫耳數比23
3.3、FITC-AuNPs對ROS和Glucose進行偵測26
3.4、以FITC-AuNPs偵測血清中Glucose32
四、結論34
五、參考文獻35

第二章 利用修飾Tween 20界面活性劑之檸檬酸鈉金奈米粒子作為汞離子和銀離子感測器
一、前言43
二、實驗部分49
2.1、藥品與溶液配製49
2.2、儀器裝置51
2.3、奈米粒子之合成53
2.4、樣品配製55
2.5、真實樣品之偵測56
三、結果與討論57
3.1、偵測機制之探討57
3.2、證明Au-Hg Alloys和Ag Shell之生成59
3.3、研究Surfactant長度、奈米粒子濃度與離子強度66
3.4、Tween 20-citrate-AuNPs對Hg2+和Ag+之選擇性探討71
3.5、Tween 20-citrate-AuNPs對Hg2+和Ag+之靈敏度探討及真實樣品的應用75
四、結論84
五、參考文獻85
參考文獻 References
第一章 以修飾異硫氰酸螢光素之金奈米粒子作為活性氧化物感測器—應用於血糖之偵測
(1) Caporaso, N. “The molecular epidemiology of oxidative damage to DNA and cancer” J. Natl. Cancer Inst. 2003, 95, 1263-1265.
(2) Wiseman, H.; Halliwell, B. “Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer” Biochem. J. 1996, 313, 17-29.
(3) Magalhaes, L. M.; Segundo, M. A.; Reis, S.; Lima, J.L. “Methodological aspects about in vitro evaluation of antioxidant properties” Anal. Chim. Acta. 2008, 613, 1-19.
(4) Olinski, R.; Gackowski, D.; Foksinski, M.; Rozalski, R.; Roszkowski, K.; Jaruga, P. “Oxidative DNA damage: assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome” Free Radic. Biol. Med. 2002, 33, 192-200.
(5) Gomes, A.; Fernandes, E.; Lima, J. L. “Fluorescence probes used for detection of reactive oxygen species” J. Biochem. Biophys. Methods 2005, 65, 45-80.
(6) Olojo, R. O.; Xia, R. H.; Abramson, J. J. “Spectrophotometric and fluorometric assay of superoxide ion using 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole” Anal. Biochem. 2005, 339, 338-344.
(7) Li, Y.; Zhu, H.; Trush, M. A. “Detection of mitochondria-derived reactive oxygen species production by the chemilumigenic probes lucigenin and luminol” Biochim. Biophys. Acta. 1999, 1428, 1-12.
(8) Teranishi, K.; Nishiguchi, T. “Cyclodextrin-bound 6-(4-methoxyphenyl)imidazo[1,2-alpha+/-]pyrazin-3(7H)-ones with fluorescein as green chemiluminescent probes for superoxide anions” Anal. Biochem. 2004, 325, 185-195.
(9) Tang, Y.; Feng, F.; He, F.; Wang, S.; Li, Y.; Zhu, D. “Direct visualization of enzymatic cleavage and oxidative damage by hydroxyl radicals of single-stranded DNA with a cationic polythiophene derivative” J. Am. Chem. Soc. 2006, 128, 14972-14976.
(10) Jiang, H.; Ju, H. “Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system” Anal. Chem. 2007, 79, 6690-6696.
(11) Daniel, M. C.; Astruc, D. “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology” Chem. Rev. 2004, 104, 293-346.
(12) Xiao, Y.; Pavlov, V.; Levine, S.; Niazov, T.; Markovitch, G.; Willner, I. “Catalytic growth of Au nanoparticles by NAD(P)H cofactors: optical sensors for NAD(P)+-dependent biocatalyzed transformations” Angew. Chem. Int. Ed. 2004, 43, 4519-4522.
(13) Zayats, M.; Baron, R.; Popov, I.; Willner, I. “Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design” Nano Lett. 2005, 5, 21-25.
(14) Shang, L.; Chen, H.; Deng, L.; Dong, S. “Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design” Biosens. Bioelectron. 2008, 23, 1180-1184.
(15) Shen, Q.; Nie, Z.; Guo, M.; Zhong, C. J.; Lin, B.; Li, W.; Yao, S. “Simple and rapid colorimetric sensing of enzymatic cleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticles as indicator” Chem. Commun. 2009, 929-931.
(16) Lee, H.; Lee, K.; Kim, I.-K.; Park, T. G. “Fluorescent gold nanoprobe sensitive to intracellular reactive oxygen species” Adv. Funct. Mater. 2009. 19. 1884-1890.
(17) Li, J.; Han, T.; Wei, N.; Du, J.; Zhao, X. “Three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modified electrodes for hydrogen peroxide biosensor” Biosens. Bioelectron. 2009, 25, 773-777.
(18) Song, Y.; Cui, K.; Wang, L.; Chen, S. “The electrodeposition of Ag nanoparticles on a type I collagen-modified glassy carbon electrode and their applications as a hydrogen peroxide sensor” Nanotechnology 2009, 20, 105501-105509.
(19) Yao, S.; Yuan, S.; Xu, J.; Wang, Y.; Luo, J.; Hu, S. “A hydrogen peroxide sensor based on colloidal MnO2/Na-montmorillonite” Appl. Clay Sci. 2006, 33, 35-42.
(20) Lee, D. Y.; Park, S. H.; Qian, D. J.; Kwon, Y. S. “Electrochemical detection of hydrogen peroxide via hemoglobin–DNA/pyterpy-modified gold electrode” Current Applied Physics 2009, 9, 232-234.
(21) Wu, Z. S.; Zhang, S. B.; Guo, M. M.; Chen, C. R.; Shen, G. L.; Yu, R. Q. “Homogeneous, unmodified gold nanoparticle-based colorimetric assay of hydrogen peroxide” Anal. Chim. Acta. 2007, 584, 122-128.
(22) Cui, H.; Wang, W.; Duan, C. F.; Dong, Y. P.; Guo, J. Z. “Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor” Chem. Eur. J. 2007, 13, 6975-6984.
(23) Chen, Y.-M.; Cheng, T.-L.; Tseng, W.-L. “Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles” Analyst 2009, 134, 2106-2112.
(24) Luo, D.; Smith, S. W.; Anderson, B. D. “Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution” J. Pharm. Sci. 2005, 94, 304-316.
(25) Kirihara, M.; Asai, Y.; Ogawa, S.; Noguchi, T.; Hatano, A.; Hiraib, Y. “A mild and environmentally benign oxidation of thiols to disulfides” Synthesis 2007, 3286-3289.
(26) Wang, H.; Wang, Y.; Jin, J.; Yang, R. “Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution” Anal. Chem. 2008, 80, 9021-9028.
(27) Lim, S. Y.; Kim, J. H.; Lee, J. S.; Park, C. B. “Gold nanoparticle enlargement coupled with fluorescence quenching for highly sensitive detection of analytes” Langmuir 2009, 25, 13302-13305.
(28) Chen, J.; Zheng, A.; Chen, A.; Gao, Y.; He, C.; Kai, X.; Wu, G.; Chen, Y. “A functionalized gold nanoparticles and rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples” Anal. Chim. Acta. 2007, 599, 134-142.
(29) Griffin, J.; Singh, A. K.; Senapati, D.; Rhodes, P.; Mitchell, K.; Yu, E.; Ray, P. C. “Size- and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C virus RNA” Chem. Eur. J. 2009, 15, 342-351.
(30) Munoz Javier, A.; Parak, W. J. “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression” Nano Lett. 2005, 5, 585-589.
(31) Shang, L.; Yin, J.; Li, J.; Jin, L.; Dong, S. “Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma” Biosens. Bioelectron. 2009, 25, 269-274.
(32) Zhao, W.; Chiuman, W.; Lam, J. C.; McManus, S. A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M. A.; Li, Y. “DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors” J. Am. Chem. Soc. 2008, 130, 3610-3618.
(33) Shiang, Y.-C.; Huang, C.-C.; Chang, H.-T. “Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose” Chem. Commun. 2009, 3437-3439.
(34) Ao, L.; Gao, F.; Pan, B.; He, R.; Cui, D. “Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles” Anal. Chem. 2006, 78, 1104-1106.
(35) Cheng, P. P.; Silvester, D.; Wang, G.; Kalyuzhny, G.; Douglas, A.; Murray, R. W. “Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters” J. Phys. Chem. B 2006, 110, 4637-4644.
(36) Chen, S.-J.; Chang, H.-T. “Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation” Anal. Chem. 2004, 76, 3727-3734.
(37) Wei, H.; Wang, E. “Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection” Anal. Chem. 2008, 80, 2250-2254.
(38) Kawasaki, T.; Akanuma, H.; Yamanouchi, T. “Increased fructose concentrations in blood and urine in patients with diabetes” Diabetes Care 2002, 25, 353-357.
(39) Arky, R. A. “Doctor, is my sugar normal?” N. Engl. J. Med. 2005, 353, 1511-1513.

第二章 利用修飾Tween 20界面活性劑之檸檬酸鈉金奈米粒子作為汞離子和銀離子感測器
(1) Campbell, L.; Dixon, D. G.; Hecky, R. E. “A review of mercury in Lake Victoria, East Africa: implications for human and ecosystem health” J. Toxicol. Environ. Health B Crit. Rev. 2003, 6, 325-356.
(2) Wood, C. M.; McDonald, M. D.; Walker, P.; Grosell, M.; Barimo, J. F.; Playle, R. C.; Walsh, P. J. “Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta)” Aquat. Toxicol. 2004, 70, 137-157.
(3) Boening, D. W. “Ecological effects, transport, and fate of mercury: a general review” Chemosphere 2000, 40, 1335-1351.
(4) Holmes, P.; James, K. A.; Levy, L. S. “Is low-level environmental mercury exposure of concern to human health?” Sci. Total Environ. 2009, 408, 171-182.
(5) Ratte, H. T. “Bioaccumulation and toxicity of silver compounds: A review” Environ. Toxicol. Chem. 1999, 18, 89-108.
(6) Karunasagar, D.; Arunachalam, J.; Gangadharan, S. “Development of a collect and punch cold vapour inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels” J. Anal. At. Spectrom. 1998, 13, 679-682.
(7) Barriada, J. L.; Tappin, A. D.; Evans, E. H.; Achterberg, E. P. “Dissolved silver measurements in seawater” Trends Analyt. Chem. 2007, 26, 809-817.
(8) Li, Y.; Chen, C.; Li, B.; Sun, J.; Wang, J.; Gao, Y.; Zhao, Y.; Chai, Z. “Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS” J. Anal. At. Spectrom. 2006, 21, 94-96.
(9) Chamsaz, M.; Arbab-Zavar, M. H.; Akhondzadeh, J. “Triple-phase single-drop microextraction of silver and its determination using graphite-furnace atomic-absorption spectrometry” Anal. Sci. 2008, 24, 799-801.
(10) Kim, H. J.; Park, D. S.; Hyun, M. H.; Shim, Y. B. “Determination of HgII Ion with a 1,11-Bis(8-quinoyloxy)-3,6,9-trioxaundecane modified glassy carbon electrode using spin-coating technique” Electroanalysis 1998, 10, 303-306.
(11) Mikelova, R.; Baloun, J.; Petrlova, J.; Adam, V.; Havel, L.; Petrek, J.; Horna, A.; Kizek, R. “Electrochemical determination of Ag-ions in environment waters and their action on plant embryos” Bioelectrochemistry 2007, 70, 508-518.
(12) Chatterjee, A.; Santra, M.; Won, N.; Kim, S.; Kim, J. K.; Kim, S. B.; Ahn, K. H. “Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media” J. Am. Chem. Soc. 2009, 131, 2040-2041.
(13) Zhan, X. Q.; Qian, Z. H.; Zheng, H.; Su, B. Y.; Lan, Z.; Xu, J. G. “Rhodamine thiospirolactone. Highly selective and sensitive reversible sensing of Hg(II)” Chem. Commun. 2008, 1859-1861.
(14) Lin, Y.-H.; Tseng, W.-L. “Highly sensitive and selective detection of silver ions and silver nanoparticles in aqueous solution using an oligonucleotide-based fluorogenic probe” Chem. Commun. 2009, 6619-6621.
(15) Wang, J.; Liu, B. “Highly sensitive and selective detection of Hg(2+) in aqueous solution with mercury-specific DNA and Sybr Green I” Chem. Commun. 2008, 4759-4761.
(16) Li, T.; Shi, L.; Wang, E.; Dong, S. “Silver-ion-mediated DNAzyme switch for the ultrasensitive and selective colorimetric detection of aqueous Ag+ and cysteine” Chemistry 2009, 15, 3347-3350.
(17) Hollenstein, M.; Hipolito, C.; Lam, C.; Dietrich, D.; Perrin, D. M. “A highly selective DNAzyme sensor for mercuric ions” Angew. Chem. Int. Ed. 2008, 47, 4346-4350.
(18) Koneswaran, M.; Narayanaswamy, R. “Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II)” Sens. Actuators B Chem. 2009, 139, 91-96.
(19) Chen, J.-L.; Zhu, C.-Q. “Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination” Anal. Chim. Acta. 2005, 546, 147-153.
(20) Huang, C.-C.; Chang, H.-T. “Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution” Anal. Chem. 2006, 78, 8332-8338.
(21) Yu, C.-J.; Tseng, W.-L. “Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate” Langmuir 2008, 24, 12717-12722.
(22) Darbha, G. K.; Singh, A. K.; Rai, U. S.; Yu, E.; Yu, H.; Ray, P. C. “Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles” J. Am. Chem. Soc. 2008, 130, 8038-8043.
(23) Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. “15N-15N J-coupling across Hg(II): direct observation of Hg(II)-mediated T-T base pairs in a DNA duplex” J. Am. Chem. Soc. 2007, 129, 244-245.
(24) Lee, J.-S.; Han, M.-S.; Mirkin, C. A. “Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles” Angew. Chem. Int. Ed. 2007, 46, 4093-4096.
(25) Xue, X.; Wang, F.; Liu, X. “One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates” J. Am. Chem. Soc. 2008, 130, 3244-3245.
(26) Yu, C.-J.; Cheng, T.-L.; Tseng, W.-L. “Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change” Biosens. Bioelectron. 2009, 25, 204-210.
(27) Li, D.; Wieckowska, A.; Willner, I. “Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines” Angew. Chem. Int. Ed. 2008, 47, 3927-3931.
(28) Liu, C.-W.; Hsieh, Y.-T.; Huang, C.-C.; Lin, Z.-H.; Chang, H.-T. “Detection of mercury(II) based on Hg2+ -DNA complexes inducing the aggregation of gold nanoparticles” Chem. Commun. 2008, 2242-2244.
(29) Rex, M.; Hernandez, F. E.; Campiglia, A. D. “Pushing the limits of mercury sensors with gold nanorods” Anal. Chem. 2006, 78, 445-451.
(30) Leopold, K.; Foulkes, M.; Worsfold, P. J. “Gold-coated silica as a preconcentration phase for the determination of total dissolved mercury in natural waters using atomic fluorescence spectrometry” Anal. Chem. 2009, 81, 3421-3428.
(31) Lisha, K. P.; Anshup; Pradeep, T. “Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles” Gold Bull. 2009, 42, 144-152.
(32) Barrosse-Antle, L. E.; Xiao, L.; Wildgoose, G. G.; Baron, R.; Salter, C. J.; Crossley, A.; Compton, R. G. “The expansion contraction of gold microparticles during voltammetrically induced amalgamation leads to mechanical instability” New J. Chem. 2007, 31, 2071-2075.
(33) Li, B.; Du, Y.; Dong, S. “DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions” Anal. Chim. Acta. 2009, 644, 78-82.
(34) Darbha, G. K.; Ray, A.; Ray, P. C. “Gold Nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish” ACS Nano 2007, 1, 208-214.
(35) Fan, Y.; Long, Y. F.; Li, Y. F. “A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles” Anal. Chim. Acta. 2009, 653, 207-211.
(36) Huang, C.-C.; Chang, H.-T “Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles” Chem. Commun. 2007, 1215-1217.
(37) Chen, J.; Zheng, A.; Chen, A.; Gao, Y.; He, C.; Kai, X.; Wu, G.; Chen, Y.“A functionalized gold nanoparticles and rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples” Anal. Chim. Acta. 2007, 599, 134-142.
(38) Zhao, W.; Chiuman, W.; Lam, J. C.; McManus, S. A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M. A.; Li, Y. “DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors” J. Am. Chem. Soc. 2008, 130, 3610-3618.
(39) Huang, C.-C.; Tseng, W.-L. “Highly selective detection of histidine using o-phthaldialdehyde derivatization after the removal of aminothiols through Tween 20-capped gold nanoparticles” Analyst 2009, 134, 1699-1705.
(40) Wei, H.; Chen, C.; Han, B.; Wang, E. “Enzyme colorimetric assay using unmodified silver nanoparticles” Anal. Chem. 2008, 80, 7051-7055.
(41) Yguerabide, J.; Yguerabide, E. E. “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications” Anal. Biochem. 1998, 262, 137-156.
(42) Xie, W.; Su, L.; Donfack, P.; Shen, A.; Zhou, X.; Sackmann, M.; Materny, A.; Hu, J. “Synthesis of gold nanopeanuts by citrate reduction of gold chloride on gold-silver core-shell nanoparticles” Chem. Commun. 2009, 5263-5265.
(43) Xia, H.; Bai, S.; Hartmann, J.; Wang, D. “Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction” Langmuir 2010, 26, 3585-3589..
(44) Shen, C.-C.; Tseng, W.-L.; Hsieh, M.-M. “Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence” J. Chromatogr. A 2009, 1216, 288-293.
(45) Huang, C.-C.; Tseng, W.-L. “Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: remover and sensor” Anal. Chem. 2008, 80, 6345-6350.
(46) Lubick, N. “Nanosilver toxicity: ions, nanoparticles--or both?” Environ. Sci. Technol. 2008, 42, 8617.
(47) Benn, T. M.; Westerhoff, P. “Nanoparticle silver released into water from commercially available sock fabrics” Environ. Sci. Technol. 2008, 42, 4133-4139.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.31.240
論文開放下載的時間是 校外不公開

Your IP address is 3.141.31.240
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code