Responsive image
博碩士論文 etd-0621112-132738 詳細資訊
Title page for etd-0621112-132738
論文名稱
Title
淺水數值模式在海嘯溢淹範圍與橋樑沖刷之應用
Application of Shallow Water Models on the Inundation Range and Bridge Scouring due to Tsunami
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-05-02
繳交日期
Date of Submission
2012-06-21
關鍵字
Keywords
地質資料、橋樑沖刷、海嘯、數值模式
Tsunami, numerical models, bridge scouring, geological information
統計
Statistics
本論文已被瀏覽 5697 次,被下載 320
The thesis/dissertation has been browsed 5697 times, has been downloaded 320 times.
中文摘要
本研究採用海嘯數值模式COMCOT(Cornell Multigrid COupled Tsunami model)模擬傳到近岸時,受到地形淺化效應溯升的海嘯波,對陸地─造成之溢淹範圍;以及對河口─逆流而上對河川中的橋樑的沖刷情形。
溢淹範圍部分,分為馬尼拉海溝之斷層參數以及鐘形波模擬水位的形式計算。結果顯示,若鐘形波的波高與馬尼拉海溝產生之海嘯傳遞至高雄外海的最大水位相同,溢淹範圍結果大致上吻合。而在不同情境水位的模擬上,發現只要達到波高1公尺,即可使整個旗津區與鼓山區沿海產生溢淹;海水入侵之距離則會隨著波高逐漸變高隨之增加。模擬的最大波高6公尺,溢淹範圍共包含鼓山區、旗津區、鹽埕區、前金區(小範圍)、前鎮區、鳳山區及小港區。在古海嘯的比對上,根據高雄市捷運工程局地質調查報告書的粒徑資料分析結果,於特定深度中可找到一層粒徑極細(約8ψ)的沉積物,其顆粒尺寸相較於上下層之沉積物粒徑有顯著差異。若此極細沉積物為海嘯沉積物之邊界,則古海嘯之水位可能為4.9公尺。
橋墩沖刷部分以關渡橋為研究區域,藉由COMCOT模式沉積物模得到之結果與馬蹄形渦流系統(horseshoe vortex system)形成的沖刷坑和堆積丘類似。根據結果,淘刷及堆積作用主要受到沉積物粒徑影響。模擬上,不同沉積物粒徑之模式結果,可約略分成三個等級:
(1) 沉積物粒徑大於62μm:最大淘刷深度皆小於4公分,最大堆積高度不超過3公分。
(2) 沉積物粒徑在62至4μm之間:最大淘刷深度介於4至5公分,最大堆積高度則在3至4公分之間。
(3) 沉積物粒徑小於4μm:最大淘刷深度可達6.8公分以上,最大堆積高度將大於5公分。
Abstract
This research adopted CMCOT model (Cornell Multi-grid Coupled Tsunami Model) to simulate the wave ran up as the tsunami entered the shoaling water of coastlines, the inundation range on land, and the bridge scour caused by tsunami as it made its way upstream in the rivers.
The inundation range was estimated with the fault parameters of Manila Trench and a simulation of bell-sphaped curve waves. The result indicated that if the height of bell-sphaped curve was the same as the maximum water level of the tsunami passed to Kaohsiung offshore, the inundation rage was generally consistent. In the simulation of different water level, we discovered that one meter of wave height was sufficient to inundate the entire coastland of Qijin and Gushan District and that the inundation rage would expand as the wave height increased. With the maximum simulated wave height of six meters, the inundation rage included Gushan, Qijin, Yancheng, Qianjin (small scope), Qianzhen, Fengshan, and Xiaogang District. As to the comparison of historical tsunami, according to the particle size analysis of geological survey from the Kaohsiung Mass Rapid Transit, a layer of fine sediment could be found at specific depth, and its particle size (about 8ψ) was significantly different than that of other layers. If this fine sediment was the border of tsunami sediment, the height of historical tsunami wave could be 4.9 meters.
With regard to bridge scour, Gwando Bridge was chosen as research area. The result from the sediment simulation of COMCOT model was similar to the scour hole and sediment deposition formed by horseshoe vortex system. Based on the result, the scouring and depositing processes were mainly influenced by the particle size of the sediment. In the simulation, the results of different sediment particle sizes were as follows:
(1) If the particle size of sediment was greater than 62μm, the maximum scour depth was less than 4 cm, and the maximum height of deposition was under 3 cm.
(2) If the particle size of sediment was between 4 and 62μm, the maximum scour depth was between 4 and 5 cm, and the maximum height of deposition was between 3 and 4 cm.
(3) If the particle size of sediment was smaller than 4μm, the maximum scour depth was above 6.8 cm, and the maximum height of deposition was greater than 5 cm.
目次 Table of Contents
摘要 I
Abstract II
目錄 IV
圖 次 VI
表 次 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 本文架構 3
第二章 文獻回顧 4
2.1 海嘯數值模擬 4
2.2 橋樑沖刷 4
第三章 研究方法 6
3.1 海嘯數值模式 6
3.1.1 控制方程式 8
3.1.2 移動邊界條件 13
3.1.3 輻射邊界及穩定條件 15
3.1.4 巢狀網格 16
3.1.5 沉積物模組 17
3.2 模式設定 18
3.2.1 溢淹範圍 18
3.2.2 橋樑沖刷 27
第四章 模式結果 39
4.1溢淹範圍模擬結果 40
4.1.1 馬尼拉海溝 40
4.1.2 不同水位之海嘯波 43
4.1.3 模式結果比較 44
4.1.4 地質資料 46
4.2 橋樑沖刷 52
4.2.1 關渡橋模擬結果 56
4.2.2 不同波高模擬結果 63
4.2.3 不同粒徑模擬結果 69
4.2.4 不同波形模擬結果 74
第五章 結論 79
5.1 結論 79
5.2 限制條件 80
參考文獻 82
附錄一 馬尼拉海溝33個子斷層參數 85
附錄二 地質調查報告書(第一冊) 86
附錄三 區域A、B、C鑽探點沉積物平均粒徑隨深度變化圖 115
附錄四 不同週期之入射波模擬結果 119
參考文獻 References
1. 徐明同(1981)。海嘯所引起之災害。中央氣象局氣象學報,27(1),1-15。
2. 高雄市政府捷運工程局籌備處(1991)。高雄都會區大眾捷運系統紅線主要路段地質工作路線及車站部分地質調查報告書(第一冊)。高雄市:作者。
3. 楊春生、湯麟武、邵建林(1993)。台灣東北部海岸地震海嘯數值推算之研究(國科會防災科技研究報告:72-73號)。臺北:中華民國行政院國家科學委員會。
4. 游明聖(1994)。明清時代的破壞性地震海嘯記錄。氣象學報,40(1),1-9。
5. 柳文成、許銘熙、張勝騰、吳啟瑞、謝文雄(2004)。淡水河河口鹽度與懸浮細泥之時空變化。臺灣水利,52(3),16-31。
6. 陳陽益與陳冠宇(2006)。海嘯模式建置研究(交通部運輸研究所合作研究計劃期末報告)。臺北:中華民國交通部運輸研究所。
7. 蘇勝欽(2006)。淡水河沿岸沉積物粒徑分布之研究(碩士論文,國立臺灣海洋大學,2006)。
8. 陳冠宇(2007,6月)。淺談海嘯及其數值模擬。77,10-17。
9. 陳韻如(2008)。2006年屏東外海地震引發海嘯的數值模擬探討(碩士論文,國立中央大學,2008)。
10. 張孟挺(2008)。台灣的海嘯威脅與高雄市溢淹之模擬(碩士論文,國立中山大學,2008)。
11. 黎烈妤(2011)。非線性頻散波形的逆推及其在海嘯波源的逆推之應用(碩士論文,國立中山大學,2011)。
12. 陳冠宇與陳陽益(2011)。臺灣沿岸海嘯影響範圍與淹水潛勢分析(4/4)(交通部運輸研究所合作研究計劃期末報告)。臺北:中華民國交通部運輸研究所。
13. Atwater, B. F. (1987). Evidence for great Holocene earthquakes along the outer coast of Washington State, Science, 236, 942-944.
14. Cho, Y.–S.(1995). Numerical simulations of tsunami propagation and run-up(Doctoral dissertation, Cornell University, 1995).
15. Cooker, M.L., D. H. Peregrine, C. Vidal & J. W. Dold(1990). The interaction between a solitary wave and a submerged semicircular cylinder. J. Fluid Mech., 215, 1-22.
16. Dargahi B.(1990). Controlling mechanism of local scouring. Journal of Hydraulic Engineering, ASCE, 116(10), 1197-1214.
17. Dey S.(1999). Time-variation of scour in the vicinity of circular piers. Proc. Instn Civ. Engrs Wat., Marit. & Energy, 136, 67-75.
18. Folk, R. L.(1974). Petrology of Sedimentary Rock(pp. 182). Hemphill:Austin, Texas.
19. Folk, R. L. & and W. C. Ward (1957). Brazos river bar: A study in the significance of grain size parameters. Jour. Sed. Petrology, 27, 3-26.
20. Imamura, F.(2006). Tsunami modeling manual. School of Civil Eng., DCRC, Tohoku Univ.
21. James T. Liu & Gary A. Zarillo(1993). Simulation of grain-size abundances on a barred upper shoreface. Marine Geology, 109, 237-251.
22. Liu, P.L.-F., Synolakis, C. E. & Yeh, H. H.(1991). Report on the international workshop on long-wave run-up. J. Fluid Mech., 229, 675-688.
23. Liu, P.L.-F., Cho, Y.-S., Yoon, S.-B., & Seo, S.-N.(1995b). Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In Tsuchiya, Shuto (Eds.), Tsunami: Progress in Prediction, Disaster Prevention and Warning(99-115). Netherlands:Kluwer Academic Publishers.
24. Liu, P. L.-F., S. B. Woo & Y. S. Cho(1998). Computer programs for tsunami propagation and inundation. Cornell University.
25. Liu, P. L.-F. et al.(2005). Observations by the International Tsunami Survey Team in Sri Lanka, Science, 308, 1595.
26. Manshinha, L., & Smylie, D. E.(1971). The displacement fields of inclines faults. Bulletin of the Seismological Society of America, 61, 1433-1440.
27. Megawati, K., F. Shaw, K. Sieh, Z. Huang, T.-R. Wu, Y. Lin, S. K. Tan, & T.C. Pan(2009). Tsunami hazard from the subduction megathrust of the South China Sea: Part I. Source characterization and the resulting tsunami. J. Asian Earth Sciences, 36(1), 13-20.
28. Rance, P.C.(1980). The potential for scour around large objects. Scour Prevention In:Techniques Around Offshore Structures. Society for Underwater Technology, London, 41-53.
29. Richardson J., Dillon, A., & McKnight, C.(1993). Space – The Final Chapter Why Physical Representations are not Semantic Intentions. A Psychological Perspective, 169-191.
30. Synolakis, C. E.(1987). The runup of solitary waves. Journal of Fluid Mechanics, 185, 523-545.
31. Titov, V. V. & F. I. Gonzalez(1997). Implementation and testing of the method of splitting tsunami (MOST) model. NOAA/Pacific Marine Environmental Laboratory.
32. Toue, T. & Wang, H.(1990). There dimensional effects of seawall on the adjacent beach. Proc. 22nd Coastal Engineering Conference, ASCE(2-6). Delft:The Netherlands.
33. Wang, X. & Liu, P.L.-F.(2005). Preliminary simulation of 1986 & 2002 Taiwan Hualien Tsunami. Cornell University.
34. Wang, X. & Liu, P.L.-F.(2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Engineering and Research, 44(2), 147-154.
35. Xiaoming Wang, & Philip L.-F. Liu(2007). Numerical simulations of the 2004 indian ocean tsunamis - coastal effects. Journal of Earthquake and Tsunami, 1(3), 273-297.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code