Responsive image
博碩士論文 etd-0621114-153633 詳細資訊
Title page for etd-0621114-153633
論文名稱
Title
含氟碳氫離子性高分子應用於燃料電池質子交換膜之研究
Fluorine-containing Hydrocarbon Ionic Polymer as Proton Exchange Membrane in PEMFC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
134
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-07
繳交日期
Date of Submission
2014-07-22
關鍵字
Keywords
燃料電池、質子交換膜、碳氫性離子高分子、含氟、局部密集
locally and density, fluorine-containing, hydrocarbon ionic polymer, proton exchange membrane, fuel cells
統計
Statistics
本論文已被瀏覽 5716 次,被下載 183
The thesis/dissertation has been browsed 5716 times, has been downloaded 183 times.
中文摘要
本論文以多苯環為核心,製備含氟的雙氟單體並分別與實驗室發展的三種雙酚單體 (9-phenyl type、8-phenyl type、7-phenyl type)材料,經親核性聚縮合反應得到三種交替型含氟碳氫性離子高分子(FA series)。調配高(H)、中(M)、低(L)不同濃度的磺酸化試劑,在溫和的條件下進行後磺酸化反應,得到九種不同微相分離型態的局部密集磺酸化高分子,IEC值介於1.28-2.47mmol/g之間,並以sFA series命名。藉由在雙氟單體的多苯環結構上導入具有強拉電子CF3官能基,因而不受到磺酸化反應的影響,使磺酸根集中在雙酚單體的多苯環結構上。
透過FT-IR鑑定材料的官能基及1H -NMR鑑定結構無誤,GPC量測三種未磺酸化高分子之重量平均分子量介於7.80×104-1.08×105 g/mol之間,高分子的熱裂解溫度(Td5%)則在584oC以上。九種磺酸化高分子的Td5%皆高於260oC以上,顯示主鏈具有不錯的熱穩定性。在高溫、高濕的狀態下,薄膜具有相當優異的尺寸安定性(0-13%)及機械性質(拉伸強度:41.7-105MPa),使薄膜皆不易膨潤且水溶,而中、高磺酸化程度的薄膜吸水率在低溫高濕環境下皆高於Nafion的20%,說明此系列材料具有不錯的保水能力,並以sFA9-H及sFA9-M擁有與Nafion 117(0.074S/cm)相當的質子導電度,0.069S/cm及0.061S/cm。綜合上述,本論文認為在碳氫性離子高分子導入適量的含氟官能基,能改善磺酸化碳氫離子性高分子的特性,因此sFA series材料有做為質子交換膜燃料電池的潛力。
Abstract
Three different bisphenol monomers (9-phenyls, 8-phenyls and 7-phenyls) containing multiple phenyl substituents on the middle triphenylene moiety have been synthesized in this thesis. Through reacting with the fluorine-containing bisfluoro monomer, three bisphenol monomers were converted into a series of alternating fluorine-containing hydrocarbon ionic polymers (FA series) by nucleophilic displacement of the fluorine atoms on the terminal benzene ring of bisfluoro monomers. The obtained polymers were sulfonated in different reagent concentrations under mild condition to control the degree of sulfonation (high, medium and low). Owing to locally and densely sulfonic acid substituent design, the 9 sulfonated polymers show well defined phase separations with IEC values between 1.28 and 2.47 mmole/g, named "sFA series". Introducing trifluoromethyl group on multi-core benzene of bisfluoride makes sulfonated groups graft on bisphenol monomer and preventing to be sulfonated due to trifluoromethyl group owing powerful electron-withdrawing effect.
The obtained polymers exhibit the average molecular weight ranging from 7.80×104 to 1.08×105g/mol in GPC. The chemical structures of polymers were characterized and confirmed by FT-IR and NMR measurements. The polymers show thermal degradation temperatures up to 260oC which indicates good thermal stability. At high temperature and high humidity environments, the sulfonated polymer membranes show excellent dimensional stabilities (0-13%) and mechanical properties (tensile strength:41.7-105 MPa), making the membranes not swollen or soluble in water. All the water uptakes of sulfonated polymers with high or middle degree of sulfonation are higher than 20%, which are comparable to Nafion’s. This confirms that these sulfonated polymers well preserve water in the films and subsequently good proton conductivities with 0.069S/cm and 0.061S/cm for sFA9-H and sFA9-M, which are comparable to Nafion 117. On the basis of above results, we believe introducing trifluoromethyl group on phenyl substituents can improve ionic conductivity of hydrocarbon ionomers and this validates sFA series have a good potential in PEMFC application.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
圖目錄 x
表目錄 xiii
第一章 序論 1
1-1 前言 1
1-2 燃料電池簡介 2
1-3 質子交換膜燃料電池 4
1-3-1 元件組成及工作原理 4
1-3-2 質子交換膜 5
1-3-3 質子交換膜傳導機制 6
1-4 質子交換膜種類 8
1-4-1 全氟離子性高分子 8
1-4-2 部分含氟離子性高分子 9
1-4-3 非氟碳氫離子性高分子 9
1-4-4 其他 10
1-5 質子交換膜結構設計 11
1-6 文獻回顧 13
1-7 研究動機 19
第二章 實驗儀器及原理 21
2-1 鑑定分析儀器 21
2-1-1 超導核磁共振儀(NMR) 21
2-1-2 基質輔助雷射脫附游離飛行質譜儀(MALDI TOF/TOF) 22
2-1-3 凝膠滲透層析儀(GPC) 23
2-1-4 傅立葉紅外線光譜儀(FT-IR) 25
2-2 熱分析儀器 27
2-2-1 熱重量分析儀(TGA) 27
2-2-2 熱示差掃描卡量計(DSC) 28
2-2-3 熱機械分析儀(TMA) 29
2-3 微觀分析 30
2-3-1 穿透式電子顯微鏡(TEM) 30
2-4 電化學分析 31
2-4-1 交流阻抗分析儀(AC Impedance) 31
2-4-2 燃料電池元件測試儀 32
第三章 實驗 34
3-1 藥品 34
3-2 實驗流程 36
3-2-1 雙酚單體流程 36
3-2-2 雙氟單體流程 37
3-2-3 高分子與磺酸化高分子流程 38
3-3 雙酚單體製備 39
3-4 雙氟單體製備 53
3-5 高分子聚合 59
3-6 高分子磺酸化 66
3-7 磺酸化後處理 68
3-7-1 薄膜製備與酸的置換 68
3-7-2 IEC測定 68
3-7-3 吸水率及尺寸安定性測試 69
3-7-4 Hydration number(λ) 70
3-7-5 氧化、水解穩定性 70
第四章 結果與討論 71
4-1 材料結構鑑定 71
4-1-1 GPC分析 71
4-1-2 FT-IR 72
4-2 熱分析及機械特性 74
4-2-1 TGA分析 74
4-2-2 機械特性 77
4-3 磺酸化薄膜可靠度分析 81
4-3-1 吸水率、λ值及尺寸安定性 81
4-3-2 氧化及水解穩定性 86
4-4 電性及微觀分析 87
4-4-1 電性分析 87
4-4-2 微觀分析 89
4-5 元件分析 91
第五章 結論 92
參考文獻 93
附錄 98
附錄3-1 MALDI-TOF 98
附錄3-2 NMR 102
附錄4-1 A series吸水率、λ值、尺寸安定性 118
附錄4-2 sA series質子導電度 119
參考文獻 References
[1] 未來燃料(一~四)系列,高瞻自然科學教學資源平台(http://highscope.ch.ntu.edu.tw/)。
[2] V. M. Vishnyakov, “Proton exchange membrane fuel cells.”, Vacuum, 2006, 80, 1053.
[3] 陳慕辰,「直接甲醇燃料電池陰陽兩極阻抗分析」,國力成功大學化學工程學系碩博士論文(2001)。
[4] M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, “Alternative Polymer Systems for Proton Exchange Membranes (PEMs).”, Chem. Rev., 2004, 104, 4587
[5] K. Sagarik, M. Phonyiem, C. Lao-ngama and S. Chaiwongwattana, “Mechanisms of proton transfer in Nafion®: elementary reactions at the sulfonic acid groups.”, Phys. Chem. Chem. Phys., 2008, 10, 2098.
[6] P. Choi, N. H. Jalani, and R. Datta, “Thermodynamics and Proton Transport in Nafion II. Proton Diffusion Mechanisms and Conductivity.”, JES, 2005, 152, E123.
[7] T. J. Peckham and S. Holdcroft, “Structure-Morphology-Property Relationships ofNon-Perfl uorinated Proton-Conducting Membranes.”, Adv. Mater., 2010, 22, 4667.
[8] Y. Chang, G. F. Brunello, J. Fuller, M. Hawley, Y. S. Kim, M. Disabb-Miller, M. A. Hickner, S. S. Jang, and C. Bae, “Aromatic Ionomers with Highly Acidic Sulfonate Groups: Acidity, Hydration, and Proton Conductivity.”, Macromolecules, 2011, 44 , 8458.
[9] C. Laberty-Robert, K. Vallé, F. Pereira and C. Sanchez, “Design and properties of functional hybrid organic–inorganic membranes for fuel cells.”, Chem. Soc. Rev., 2011,40, 961.
[10] 吳千舜,諸柏仁,「燃料電池質子交換膜的最新發展」,The Chiness Chem. Soc., 2004, 62, 123.
[11] B. Smitha, S. Sridhar, A. A. Khan, “Solid Polymer Electrolyte Membranes for Fuel Cell Applications-a review.”, J. Membr. Sci.,2005 , 259, 10.
[12] Ming Wai Emily Tsang, “Structure-Pproperty Relationships of PEMs Using Fluorous-ionic Coplymers.”, Simon Fraser University, Degree of Doctor of Philosophy in the Department of Chemistry(2011), p37.
[13] C. Zhao, H. Lin, K. Shao, X. Li, H. Ni, Z. Wang, H. Na, “Block sulfonated poly(ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes.”, J. Power Sources, 2006, 162, 1003.
[14] T. Nakano, S. Nagaoka and H. Kawakami, “Preparation of novel sulfonated block copolyimides for proton conductivity membranes.”, Polym. Adv. Technol., 2005, 16, 753.
[15] E. M. W. Tsang, Z. Zhang, Z. Shi, T. Soboleva and S. Holdcroft, “Considerations of Macromolecular Structure in the Design of Proton Conducting Polymer Membranes: Graft versus Diblock Polyelectrolytes.”, J. Am. Chem. Soc., 2007, 129, 15106.
[16] L. Wu, Z. Zhang, J Ran, D.Zhou, C. Lia and T. Xu, “Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs).”, Phys. Chem. Chem. Phys., 2013,15, 4870.
[17] H. S. Lee, A. Roy, O. Lane1, M. Lee and J. E. McGrath, “Synthesis and Characterization of Multiblock Copolymers Based on Hydrophilic Disulfonated Poly(arylene ether sulfone) and Hydrophobic Partially Fluorinated Poly(arylene ether ketone) for Fuel Cell Applications. ”,J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 214.
[18] Q. Li , R. He, J. O. Jensen, and N. J. Bjerrum, “Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100°C.”, Chem. Mater., 2003, 15, 4896.
[19] 何基任,「應用於質子交換膜之磺酸化聚芳香醚高分子」,國立中山大學光電工程學系碩士論文(2009)。
[20] 吳昇峰,「燃料電池使用之磺酸化聚芳香醚高分子」,國立中山大學光電工程學系碩士論文(2010)。
[21] 阮凡軒,「新穎雙酚單體合成聚芳香醚高分子在軟性基板上之致被與特性研究」,國立中山大學光電工程學系碩士論文(2011)。
[22] 湯凱鈞,「局部密集磺酸化聚芳香醚高分子應用於質子交換膜之研究」,國立中山大學光電工程學系碩士論文(2012)。
[23] 朱孟涵,「磺酸化聚芳香醚高分子之合成及在燃料電池上質子交換膜之應用」,國立中山大學光電工程學系碩士論文(2012)。
[24] 陳家茵,「交替型磺酸化聚芳香醚高分子於燃料電池質子交換膜之合成及應用」,國立中山大學光電工程學系碩士論文(2013)。
[25] 張家瑄,「交替型磺酸化聚芳香醚高分子苯環取代基隊質子導電度的影響」,國立中山大學光電工程學系碩士論文(2013)。
[26] 蘇文弘,「磺酸化無規共聚聚芳香醚高分子之合成及其應用於燃料電池質子交換膜上之評估」,國立中山大學光電工程學系碩士論文(2013)。
[27] S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, and A. S. Hay, “Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End Groups: Novel Branched Poly(ether-ketone)s.”, Macromolecules, 2008, 41, 281.
[28] S. Matsumura, A. R. Hlil, N. Du, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft and A. S. Hay, “Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups: Novel branched poly(ether-ketone)s with 3,6-ditrityl-9H-carbazole end-groups. ”, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 3860.
[29] D. Chen, S. Wang, M. Xiao, Y. Meng and A. S. Hay, “Novel polyaromatic ionomers with large hydrophilic domain and long hydrophobic chain targeting at highly proton conductive and stable membranes. ”, J. Mater. Chem., 2011,21, 12068.
[30] K. Matsumoto , T. Higashihara and M. Ueda, “Locally and Densely Sulfonated Poly(ether sulfone)s as Proton Exchange Membrane.”, Macromolecules, 2009, 42 , 1161
[31] D. S. Kim, G. P. Robertson, and M. D. Guiver, “Comb-Shaped Poly(arylene ether sulfone)s as Proton Exchange Membranes.”, Macromolecules, 2008, 41, 2126.
[32] N. Li, S. Y. Lee, Y. L. Liu, Y. M. Lee and M. D. Guiver, “A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers.”, Energy Environ. Sci., 2012,5, 5346.
[33] C. Wang, D. W. Shin, S. Y. Lee, N. R. Kang, G. P. Robertson, Y. M. Lee and M. D. Guiver, “A clustered sulfonated poly(ether sulfone) based on a new fluorene-based bisphenol monomer.”, J. Mater. Chem., 2012, 22, 25093.
[34] J. Pang, K. Shen, D. Ren, S. Feng, Y. Wang and Z. Jiang, “Polymer electrolyte membranes based on poly(arylene ether)s with penta-sulfonated pendent groups. ”, J. Mater. Chem. A, 2013,1, 1465.
[35] D. S. Kim, G. P. Robertson, Y. S. Kim, and M. D. Guiver, “Copoly(arylene ether)s Containing Pendant Sulfonic Acid Groups as Proton Exchange Membranes.”, Macromolecules 2009, 42, 957.
[36] K. Nakabayashi, T. Higashihara, and M. Ueda, “Polymer Electrolyte Membranes Based on Poly(phenylene ether)s with Pendant Perfluoroalkyl Sulfonic Acids.”, Macromolecules 2011, 44, 1603.
[37] Y. Chang, G. F. Brunello, J. Fuller, M. L. Disabb-Miller, M. E. Hawley, Y. S. Kim, M. A. Hickner, S. S. Jang and C. Bae, “Polymer electrolyte membranes based on poly(arylene ether sulfone) with pendant perfluorosulfonic acid.”, Polym. Chem., 2013, 4, 272.
[38] 葉昀生,「低介電含氟多面體倍半矽氧烷寡聚物/聚亞醯胺奈米複合材料合成與特性之研究」,國立雲林科技大學化學工程學系碩士論文(2006)。
[39] K. Miyatake, K. Oyaizu, E. Tsuchida, A. S. Hay, “Synthesis and Properties of Novel Sulfonated Arylene Ether/Fluorinated Alkane Copolymers”, Macromolecules, 2001, 34, 2065.
[40] T. B. Norsten, M. D. Guiver, J. Murphy,T. Astill, T. Navessin, S. Holdcroft, B. L. Frankamp, V. M. Rotello, and J. Ding, “Highly Fluorinated Comb-Shaped Copolymers as Proton Exchange Membranes (PEMs): Improving PEM Properties Through Rational Design.”, Adv. Funct. Mater. 2006, 16, 1814.
[41] A. A. Goodwin, F. W. Mercer, and M. T. McKenzie, “Thermal Behavior of Fluorinated Aromatic Polyethers and Poly(ether ketone)s.”, Macromolecules, 1997, 30, 2767.
[42] H. C. Lee, H. S. Hong, Y. M. Kim, S. H. Choi, M. Z. Hong, H. S. Lee, K. Kim, “Preparation and evaluation of sulfonated-fluorinated poly(arylene ether)s membranes for a proton exchange membrane fuel cell (PEMFC).”, Electrochimica Acta 2004, 49, 2315.
[43] D. S. Kim, G. P. Robertson, M. D. Guiver, Y. M. Lee, “Synthesis of highly fluorinated poly(arylene ether)s copolymers for proton exchange membrane materials.”, J. Membr. Sci., 2006, 281, 111.
[44] C. C. Lee, W. Y. Huang, “The influence of ether linkage positions and phenyl substituents on the physical properties of functional fluorinated polymers.”, Polym., 2011, 43, 180.
[45] W. Y. Huang and S. Y. Huang, “Sterically Encumbered Fluorene-Based Poly(arylene ether)s Containing Spiro-annulated Substituents on the Main Chain.”, Macromolecules, 2010, 43, 10355.
[46] W. Y. Huang, M. Y. Chang, Y. K. Han and P. T. Huang, “Sterically Encumbered Poly(arylene ether)s containing Spiro-annulated Substituents: Synthesis and Thermal Properties.”, J. Polym. Sci. Part A: Polym. Chem., 2010, 48, 5872.
[47] C. C. Lee, C. T. Lee, J. L. Liu and W. Y. Huang, “Quasi-solitons of the Two-mode Korteweg-de Vries Equation.”, Eur. Phys. J. Appl. Phys. 2010, 52, 11301.
[48] C. Y. Chen, S. H. Chan, H. L. Chen, J. H. Chen, W. Y. Huang and S. A. Chen, “Formation and Thermally-Induced Disruption of Nanowhiskers in Poly(3-hexylthiophene)/Xylene Gel Studied by Small Angle X-ray Scattering”, Macromolecules, 2010, 43, 7305.
[49] H. J. Reich, “Chem 605-Structure Determination Using Spectroscopic Methods.”, (http://www.chem.wisc.edu/areas/reich/chem605/)
[50] K. F. Medzihradszky, J. M. Campbell, M. A. Baldwin, A. M. Falick, P. Juhasz, M. L. Vestal, A. L. Burlingame, “The Characteristics of Peptide Collision-Induced Dissociation Using a High-Performance MALDI-TOF/TOF Tandem Mass Spectrometer.”, Anal. Chem. 2000, 72, 552.
[51] P. Jacquinot, “New developments in interference spectroscopy. ”, Rep. Prog. Phys., 1960, 23, 267.
[52] J. Connes, and P. Connes, “Near-Infrared Planetary Spectra by Fourier Spectroscopy. I. Instruments and Results”, J. Opt. Soc. Am. ,1966, 56, 896.
[53] T. Soboleva, Z. Xie, Z. Shi, E. Tsang, T. Navessin, S. Holdcroft, “Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes.”, J. Electroanal. Chem., 2008, 622, 145.
[54] N.C. Foster, Ph.D., P. E., Chemithon, 1997.
[55] Y. S. Ye, Y. C. Yen, C. C. Cheng, W. Y. Chen, L. T. Tsai, F. C. Chang, “Sulfonated poly(ether ether ketone) membranes Crosslinked with Sulfonic Acid Containing Benzoxazine Monomer as Proton Exchange Membranes.”, Polymer 2009, 50, 3196.
[56] S. Tian, Y. Meng, and A. S. Hay, “Membranes from Poly(aryl ether)-Based Ionomers Containing Randomly Distributed Nanoclusters of 6 or 12 Sulfonic Acid Groups.”, Macromolecules, 2009, 42, 1153.
[57] D. Zhao, J. Li, M. K. Song, B. Yi, H. Zhang and M. Liu, “A Durable Alternative for Proton-Exchange Membranes: Sulfonated Poly(Benzoxazole Thioether Sulfone)s.”, Adv. Energy Mater. 2011, 1, 203.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code